

Cassandra Monte Carlo Software

[image: License]
[image: Citing]
[image: Version] [https://anaconda.org/conda-forge/cassandra]
[image: Azure]
[image: GitHub] [https://github.com/MaginnGroup/Cassandra]

Overview

Cassandra is an open source Monte Carlo software package developed in the
Maginn group [http://sites.nd.edu/maginn-group/] at the
University of Notre Dame. It is designed to perform atomistic simulations
of molecules composed of rings, chains, or both.

Warning

ReadTheDocs documentation for Cassandra is currently under
construction. The PDF reference manual [https://github.com/MaginnGroup/Cassandra/releases/latest/download/user_guide.pdf]
is still considered the authoritative source during our transition to
ReadTheDocs. This message will be removed once the transition to
ReadTheDocs is complete.

Resources

	Installation guide: Instructions for installing Cassandra

	Cassandra Basics: The basic workflow to use Cassandra

	MoSDeF Cassandra [https://mosdef-cassandra.readthedocs.io] : A full-fledged
Python wrapper for Cassandra

	GitHub repository [https://github.com/MaginnGroup/Cassandra]: View the source code, contribute, and raise issues

	Workshop Materials [https://cassandra.nd.edu/images/code/cassandra_workshop_materials_June2016.tar.gz]: Notes on statistical
mechanics and additional tutorials from a June 2016 Cassandra Workshop

Citation

Please cite our publication if you use this software as part of your research.

Installation

Complete installation instructions are here.
A conda installation is available:

conda create --name mc -c conda-forge cassandra

Credits

Development of Cassandra was supported by the National Science Foundation
under grant number ACI-1339785. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation.

Complete acknowledgements can be found here.

Introduction

Cassandra is an open source Monte Carlo package capable of simulating any number
of molecules composed of rings, chains, or both. It can be used to simulate
compounds such as small organic molecules, oligomers, aqueous solutions and
ionic liquids. It handles standard ‘’Class I’’-type force fields having fixed
bond lengths, harmonic bond angles and improper angles, a CHARMM or OPLS-style
dihedral potential, a Lennard-Jones 12-6 potential and fixed partial charges. It
does not treat flexible bond lengths. Cassandra uses OpenMP
parallelization and comes with a number of scripts, utilities and examples to
help with simulation setup.

Cassandra is capable of simulating systems in the following ensembles:

	Canonical (NVT)

	Isothermal-isobaric (NPT)

	Grand canonical (\(\mu\)VT)

	Constant volume Gibbs (NVT-Gibbs)

	Constant pressure Gibbs (NPT- Gibbs)

Installation

We recommend the conda installation for beginning users. The conda installation
will install the Cassandra executable and also provide the library_setup.py
and mcfgen.py auxillary scripts. If you wish to contribute to Cassandra
or have access to an Intel compiler, you may wish to install from source.

Note

The Intel compiler offers substantial performance improvements
compared to gfortran. If you are running a large number of
production calculations and have access to the Intel compiler
you may want to take the time to install from source.

Installing with conda

If you already have
conda [https://docs.conda.io/en/latest/miniconda.html] installed,
you can create a new conda environment and install Cassandra with
a single command:

conda create --name mc -c conda-forge cassandra

The command creates a new conda environment (mc) and installs
cassandra. The -c flag specifies the conda channels that
is used to install cassandra. To use the environment,
run conda activate mc.

After activating the environment, you can test your installation
by checking that the required executables are on your PATH
with the following commands:

which cassandra.exe
which mcfgen.py
which library_setup.py

The version of cassandra installed through conda uses
OpenMP parallelization. The number of parallel threads is controlled
through the OMP_NUM_THREADS environment variable. For example, to
use eight threads with a bash terminal you would run:

export OMP_NUM_THREADS=8

Installing from source

Cassandra may alternatively be installed from source. There are two
methods for obtaining the source code: (1) downloading the
tarball of the latest release from our GitHub releases page [https://github.com/MaginnGroup/Cassandra/releases/latest/], or (2)
cloning the GitHub repository. The command to clone the repository
is:

git clone https://github.com/maginngroup/cassandra.git

If you download the tarball from the GitHub releases page,
you will need to unpack it:

tar -xzvf Cassandra-1.2.4.tar.gz

In either case, after obtaining the source code, go into the
Src directory and run the following:

make -f Makefile.gfortran.openMP
cd ../
mkdir bin/
mv Src/cassandra_gfortran_openMP.exe ./bin/cassandra.exe
cp Scripts/Frag_Library_Setup/library_setup.py ./bin/.
cp Scripts/MCF_Generation/mcfgen.py ./bin/.

Note

There are several different Makefiles in the Src directory.
The Makefiles with the .openMP extension use
OpenMP parallelization.

Finally, if you wish, you can add Cassandra-1.2.4/bin
to your PATH:

export PATH=path_to_install/Cassandra-1.2.4/bin:${PATH}

Unless you add the preceding line to your .bashrc you will need to
run it every time you open a new terminal window.

Cassandra Basics

Flow Diagram

A flow diagram that overviews the setup for a Cassandra simulation is displayed
in Fig. 1. This diagram employs two automation scripts located
in the /Scripts/ directory: mcfgen.py and library_setup.py. These
scripts are particularly useful when simulating large molecules. For details
about how to use them, please refer to sections sec:mcfgen and sec:libgen of
this user guide, and to the README files located in the subdirectories inside
the directory /Scripts/.

[image: ../_images/setup_flowdiagram.png]

Fig. 1 Flow diagram representing a typical setup of a Cassandra simulation

Cassandra Simulation Setup

Once a system is identified, setting up a Cassandra simulation from
scratch requires preparation of the following files.

	A molecular connectivity file (MCF) (*.mcf) containing the
molecular connectivity information on bonds, angles, dihedrals,
impropers and whether the molecule is composed of fragments.
For information on the MCF file, please refer to Molecular Connectivity File.

	An input file (*.inp) (see Simulation Input File)

	If the molecule is composed of fragments, then a fragment library
file for each of the fragments is required. For instructions on
how to generate these files, please refer to Generate Library of Fragment Configurations.

MCF files for united-atom models of methane, isobutane, dimethylhexane,
cyclohexane and diethylether are provided in the MCF directory. Input
files for NVT, NPT, GCMC and GEMC ensembles are located in the Examples
directory which also contains fragment library files for a number of molecules
simulated in these ensembles.

Cassandra File Preparation

MCF File

One MCF file is required for each unique species in a simulation. A species is
defined as a collection of atoms associated with each other through bonds. Thus
a molecule is a species as is an ion. If you wanted to simulate sodium sulfate,
you would need separate MCF files for the sodium ion and the sulfate ion. MCF
files can be created manually or by using the scripts provided with the code, as
described in the section Generate a Molecular Connectivity File. Instructions for generating an MCF
file can also be found in the Scripts/MCF_Generation/README file.

Input File

An input file is required for a Cassandra simulation. The input file specifies
conditions for the simulation and various keywords required for the simulation
in a given ensemble. Please refer to Simulation Input File for further
details.

Fragment Library Generation

Cassandra makes use of reservoir sampling schemes to correctly and efficiently
sample the various coupled intramolecular degrees of freedom associated with
branch points and rings. For more information, please see Ref. cite{Shah:2011}.
The molecule is decomposed into fragments that are either branch points or ring
groups, each coupled to other fragments via a single dihedral angle. Thus, the
total number of fragments of a molecule is the sum of branch points and ring
groups in the molecule. The neighboring fragments are connected by two common
atoms present in each of the fragments. Note that the ring group contains all
the ring atoms and those directly bonded to the ring atoms. For each fragment
identified, Cassandra runs a pre-simulation in the gas phase to sample the
intramolecular degrees of freedom. A library of a large number of these
conformations are stored for use in an actual simulation.

The gas phase library generation has been automated with the script
library_setup.py located in the Scripts/Frag_Library_Setup
directory. Use the following command for generating the fragment library:

python $PATH/Frag_Library_Setup/library_setup.py $PATH/Src/cassandra_executable input_filename mol1.pdb (mol1.cml) mol2.pdb (mol2.cml) ...}

where input_filename is the name of the input file for the actual simulation
and mol1.pdb mol2.pdb ... or mol1.cml mol2.cml ...} correspond to the
names of the pdb (or cml) files used to generated the MCF files. Make sure that
if a file does not exist in the current working directory, its path relative to
the current working directory is specified.

Running a Simulation

To launch a Cassandra simulation, run the following command:

cassandra_executable input_filename

The executable will read input_filename and execute the instructions. Make
sure that the required files (MCF, fragment library files) are located in the
directories as given in the input file.

Restarting a Simulation

Restarting a simulation requires either a checkpoint file (*.chk produced by
Cassandra) or a configuration file obtained from xyz files generated from a
previous simulation. Please refer to Start Type to find
information about the keywords checkpoint and read_config.

Cassandra Output Files

Cassandra generates several output files which can be used for later analysis.
All have as a prefix the Run_Name specified in the input file.
See Run Name for details. The type of output is specified by the
file name suffix. The following are generated:

	Log file (*.log): Contains basic information on what the run is,
timing information and reports the various parameters specified by the user. A
complete copy of the input file is reproduced. Other important information
includes the move acceptance rates. You can use the log file to keep track of
what conditions were simulated.

	Coordinate file (*.xyz or *.box#.xyz): For each box in the
system, a set of xyz coordinates are written out with a frequency specified by
the user (Coord_Freq). The file has as a header the number of atoms in the
box. Following this, the atomic coordinates of molecule 1 of species 1 are
written, then the coordinates of molecule 2 of species 1 are written, etc.
After all the coordinates of the molecules of species 1 are written, the
coordinates of the molecules of species 2 are written, etc. You can use this
file to do all your structural analysis and post processing.

Note

Note that if you generate your initial configuration using the make_config
command, the first ‘’snapshot’’ of the coordinate file will contain the initial
configuration of all the species in the system for a given box. You can use this
configuration to check on whether the initial configuration is reasonable, or
use it as an input to other codes. Note that the initial configuration will be
generated using a configurational biased scheme, so it may be a better starting
configuration than if you used other methods.

	Checkpoint file (*.chk): A checkpoint file is written every
Coord_Freq steps. This can be used to restart a simulation from this point
using all of the same information as the run that was used to generate the
checkpoint file. To do this, you must use the checkpoint restart option (see
Start Type. It will basically pick up where the simulation
left off, using the same random number seed, maximum displacements, etc. This
is useful in case your job crashes and you want to continue running a job. You
can also use the checkpoint file to start a new simulation using the
configuration of the checkpoint file as an initial configuration and the
optimized maximum displacements. To do this, use the script read_old.py. You
will need to set a new random number seed if you do this. See the
documentation in Starting Seed for more details.

	H-matrix file (*.H or *.box#.H): This file is written to every
Coord_Freq MC steps. The first line is the box volume in angstrom3. The
next three lines are the box coordinates in angstrom in an H-matrix form.
Since Cassandra only supports cubic boxes at the moment, this is just a
diagonal and symmetric matrix, but is included here for later versions that
will enable non-orthogonal boxes. After this, a blank line is written. The
next line is the box number, and the final line(s) is(are) the species ID and
number of molecules for that species in this box. If there are three species,
there will be three lines. This output is repeated every Coord_Freq times.
This file allows you to compute the density of the box during constant
pressure simulations.

	Property file (*.prp# or *.box#.prp#): This file lists the
instantaneous thermodynamic and state properties for each box. Note that you
can have more than one property file (hence the # after ‘prp’) and more than
one box (also why there is a # after ‘box’). The user specifies which
properties are to be written and in what order, and these are then reproduced
in this file. The file is written to every Prop_Freq steps. A header is
written to the first two lines to designate what each property is. You may use
this file to compute thermodynamic averages.

	Widom property file (*.spec#.wprp or *.spec#.box#.wprp): This
file lists the average widom_var (defined
in CBMC Widom Insertion Method) for each system configuration (step) in which
Widom insertions are performed for a given species and a given box. The
species number is the # in .spec# in the file extension. For a
multi-box system, the box number is the # in .box#. The first
column contains the number of MC steps or sweeps that have been completed
when the Widom insertions are performed and the second column contains the
average widom_var for that step.

	Secondary Widom property file (*.spec#.wprp2 *.spec#.box#.wprp2): This
file lists the average widom_var (defined
in CBMC Widom Insertion Method) for each Widom insertion subgroup in each system
configuration (step) in which Widom insertions are performed for a given species
and a given box. The naming convention is analogous to that of normal Widom
property files. There is one row (line) per system configuration (frame) in which Widom insertions
are performed for the species and box, and one column per subgroup per Widom insertion frame.
Unlike basic Widom property files, these do not have row or column labels, and do not include
the step number or sweep number, but the step number or sweep number corresponding to each
row is the same as in the Widom property file. Further details are given in
Widom Insertion).

Force Field

Bonds

Cassandra is designed assuming all bond lengths are fixed. If you wish
to utilize a force field developed with flexible bond lengths, we
recommend that you either use the nominal or “equilibrium” bond lengths
of the force field as the fixed bond lengths specified for a Cassandra
simulation or carry out an energy minimization of the molecule with a
package that treats flexible bond lengths and utilize the bond lengths
obtained from the minimization.

Table 1 Cassandra units for bonds

	Parameter

	Symbol

	Units

	Bond length

	\(l\)

	Å

Angles

Cassandra supports two types of bond angles:

	fixed : The angle declared as fixed is not perturbed during the
course of the simulation.

	harmonic : The bond angle energy is calculated as

\[E_\theta = K_\theta (\theta - \theta_0)^2
\label{Eq:angle_potential}\]

where the user must specify \(K_\theta\) and \(\theta_0\).
Note that a factor of \(1/2\) is not used in the energy
calculation of a bond angle. Make sure you know how the force
constant is defined in any force field you use.

Table 2 Cassandra units for bond angles

	Parameter

	Symbol

	Units

	Nominal bond angle

	\(\theta_0\)

	degrees

	Bond angle force constant

	\(K_\theta\)

	K/rad2

Dihedrals

Cassandra can handle four different types of dihedral angles:

	OPLS: The functional form of the dihedral potential is

\[E_\phi = a_0 + a_1\, \left (1 + \cos(\phi) \right) + a_2 \, \left (1 -
 \cos(2\phi)\right) + a_3 \, \left (1 + \cos (3\phi)\right)\]

where \(a_0\), \(a_1\), \(a_2\) and \(a_3\) are
specified by the user.

	CHARMM: The functional form of the potential is

\[E_\phi = a_0 (1 + \cos (a_1\phi - \delta))\]

where \(a_0\), \(a_1\) and \(\delta\) are specified by
the user.

	harmonic: The dihedral potential is of the form:

\[E_\phi = K_\phi (\phi - \phi_0)^2\]

where \(K_\phi\) and \(\phi_0\) are specified by the user.

	none : There is no dihedral potential between the given atoms.

Table 3 Cassandra units for proper dihedrals

	Functional Form

	Parameter

	Units

	OPLS

	\(a_0\), \(a_1\), \(a_2\), \(a_3\)

	kJ/mol

	CHARMM

	\(a_0\)

	kJ/mol

	CHARMM

	\(a_1\)

	dimensionless

	CHARMM

	\(\delta\)

	degrees

	harmonic

	\(K_\phi\)

	K/rad2

	harmonic

	\(\phi_0\)

	degrees

Impropers

Improper energy calculations can be carried out with the following two
options:

	none: The improper energy is set to zero for the improper angle.

	harmonic: The following functional form is used to calculate the
energy due to an improper angle

\[E_\psi = K_\psi \left (\psi - \psi_0 \right)^2\]

where \(K_\psi\) and \(\psi_0\) are specified by the user.

Table 4 Cassandra units for impropers

	Parameter

	Symbol

	Units

	Force constant

	\(K_\psi\)

	K/rad2

	Improper

	\(\psi_0\)

	degrees

Nonbonded

The nonbonded interactions between two atoms \(i\) and \(j\) are
due to repulsion-dispersion interactions and electrostatic interactions
(if any).

Repulsion-Dispersion Interactions

The repulsion-dispersion interactions can take one of the following
forms:

	Lennard-Jones 12-6 potential (LJ):

\[{\cal V}(r_{ij})= 4 \epsilon_{ij} \left [\left (\frac {\sigma_{ij}} { r_{ij} }\right)^{12} - \left (\frac {\sigma_{ij}} { r_{ij} }\right)^{6}\ \right]\]

where \(\epsilon_{ij}\) and \(\sigma_{ij}\) are the energy
and size parameters set by the user. For unlike interactions,
different combining rules can be used, as described elsewhere. Note
that this option only evaluates the energy up to a specified cutoff
distance. As described below, analytic tail corrections to the
pressure and energy can be specified to account for the finite cutoff
distance.

	Cut and shift potential:

\[{\cal V}(r_{ij})= 4 \epsilon_{ij} \left [\left (\frac {\sigma_{ij}} { r_{ij} }\right)^{12} - \left (\frac {\sigma_{ij}} { r_{ij} }\right)^{6}\ \right] - 4 \epsilon_{ij} \left [\left (\frac {\sigma_{ij}} { r_{cut}}\right)^{12} - \left (\frac {\sigma_{ij}} { r_{cut} }\right)^{6}\ \right]
\label{Eq:cut_shift}\]

where \(\epsilon_{ij}\) and \(\sigma_{ij}\) are the energy
and size parameters set by the user and \(r_{cut}\) is the cutoff
distance. This option forces the potential energy to be zero at the
cutoff distance. For unlike interactions, different combining rules
can be used, as described elsewhere.

	Cut and switch potential:

\[{\cal V}(r_{ij})= 4 \epsilon_{ij} \left [\left (\frac {\sigma_{ij}} { r_{ij} }\right)^{12} - \left (\frac {\sigma_{ij}} { r_{ij} }\right)^{6}\ \right] f
 \label{Eq:cut_switch}\]

The factor \(f\) takes the following values:

\[\begin{align}\begin{aligned}\begin{aligned}
 f =
 \begin{cases}\\\begin{split} 1.0 \, \, \, & r_ {ij} \le r_{on} \\
 \frac { (r_{off}^2 - r_{ij}^2)^2 (r_{off}^2 - 3r_{on}^2 + 2r_{ij}^2)} {\left (r_{off}^2 - r_{on}^2 \right)^3} \, \, \, & r_{on} < r_{ij} < r_{off}\\
 0.0 \, \, \, & r_{ij} \ge r_{off}\end{split}\\ \end{cases}\end{aligned}\end{aligned}\end{align} \]

where \(\epsilon_{ij}\) and \(\sigma_{ij}\) are the energy
and size parameters set by the user. This option smoothly forces the
potential to go to zero at a distance \(r_{off}\), and begins
altering the potential at a distance of \(r_{on}\). Both of these
parameters must be specified by the user. For unlike interactions,
different combining rules can be used, as described elsewhere.

	Mie potential (generalized form of LJ):

\[{\cal V}(r_{ij})= \left (\frac{n}{n-m} \right) \left (\frac {n}{m} \right)^{\frac{m}{n-m}}\epsilon_{ij} \left [\left (\frac {\sigma_{ij}} { r_{ij} }\right)^{n} - \left (\frac {\sigma_{ij}} { r_{ij} }\right)^{m}\ \right]
 \label{Eq:mie}\]

where \(\epsilon_{ij}\) and \(\sigma_{ij}\) are the energy
and size parameters and \(n\) and \(m\) are the repulsive and
attractive exponents set by the user. This option allows for the use
of a generalized LJ potential (for LJ, \(n\) = 12 and \(m\) =
6). Note that this option only evaluates the energy up to a specified
cutoff distance. Both n and m can take on separate integer or float
values set by the user. For unlike interactions, different combining
rules can be used, as described elsewhere.

	Mie cut and shift potential:

\[{\cal V}(r_{ij})= \left (\frac{n}{n-m} \right) \left (\frac {n}{m} \right)^{\frac{m}{n-m}}\epsilon_{ij} \left [\left (\frac {\sigma_{ij}} { r_{ij} }\right)^{n} - \left (\frac {\sigma_{ij}} { r_{ij} }\right)^{m}\ \right] - \left (\frac{n}{n-m} \right) \left (\frac {n}{m} \right)^{\frac{m}{n-m}}\epsilon_{ij} \left [\left (\frac {\sigma_{ij}} { r_{cut}}\right)^{n} - \left (\frac {\sigma_{ij}} { r_{cut} }\right)^{m}\ \right]
 \label{Eq:mie_cut_shift}\]

where \(\epsilon_{ij}\) and \(\sigma_{ij}\) are the energy
and size parameters and \(n\) and \(m\) are the repulsive and
attractive exponents set by the user. This option forces the
potential energy to be zero at the cutoff distance (i.e. setting
\(n\) = 12 and \(m\) = 6 provides the same potential as the
LJ cut and shift option). For unlike interactions, different
combining rules can be used, as described elsewhere.

	Tail corrections: If the Lennard-Jones potential is used, standard
Lennard-Jones tail corrections are used to approximate the long range
dispersion interactions

Table 5 Cassandra units for repulsion-dispersion interactions

	Parameter

	Symbol

	Units

	Energy parameter

	\(\epsilon/k_B\)

	K

	Collision diameter

	\(\sigma\)

	Å

Electrostatics

Electrostatic interactions are given by Coulomb’s law

\[{\cal V}_{elec} (r_{ij}) = \frac{1}{4\pi\epsilon_0} \frac {q_i q_j} {r_{ij}}.
\label{Eq:Coulomb}\]

where \(q_i\) and \(q_j\) are the partial charges set by the
user, which are placed on atomic positions given by \(r_i\) and
\(r_j\). In a simulation, the electrostatic interactions are
calculated using either an Ewald summation, the
Damped Shifted Force [https://doi.org/10.1063/1.2206581],
or a direct summation using the minimum image convention.
Note that the total energy that is printed out
in the property file is extensive. Consequently, to obtain intensive
energies, the printed energies must divided by the total number of
molecules in the system.

Table 6 Cassandra units for coulombic interactions

	Parameter

	Symbol

	Units

	Charge

	\(q\)

	e

Summary of Cassandra units

Table 7 Summary of Cassandra units for input parameters

	Item

	Parameter

	Units

	Bonds

	\(l\)

	Å

	Bond angles

	\(\theta_0\)

	degrees

	Bond angles

	\(K_\theta\)

	K/rad2

	OPLS dihedrals

	\(a_0\), \(a_1\), \(a_2\), \(a_3\)

	kJ/mol

	CHARMM dihedrals

	\(a_0\)

	kJ/mol

	CHARMM dihedrals

	\(a_1\)

	dimensionless

	CHARMM dihedrals

	\(\delta\)

	degrees

	Harmonic dihedrals

	\(K_\phi\)

	K/rad2

	Harmonic dihedrals

	\(\phi_0\)

	degrees

	Impropers

	\(K_\psi\)

	K/rad2

	Impropers

	\(\psi_0\)

	degrees

	Simulation box length

	
	Å

	Distances

	
	Å

	Volume

	
	Å3

	Rotational width

	
	degrees

	Temperature

	
	K

	Pressure

	
	bar

	Chemical potential

	
	kJ/mol

	Energy

	
	kJ/mol

Files Required to Run Cassandra

Simulation Input File

This is a required file that is given as an argument to the Cassandra
executable. Example input files for each ensemble are provided in the
Examples directory that can be modified for new simulations. The input
file is divided into sections. Each section begins with a section header
that starts with a #, e.g. # Run_Name, and ends with a blank line.
Section # Move_Probability_Info is an exception and terminates with
Done_Move_Probability_Info, because subsections e.g.
Prob_Translation are separated by blank lines. Comment lines begin with
! and are ignored. Sections in the input file can be listed in any
order, but the order and format of keywords and parameters given in each
section are important unless otherwise noted below. Previously, some
keywords were capitalized, e.g. CUBIC, some contained an initial
capital, e.g. Units, and some were all lowercase, e.g. kappa_ins. New
in version 1.2, all keywords are supported in lowercase text; each word
in a section header must still begin with an initial capital.

Run Name

Run_Name

Character

The run name is specified on the next line following the keyword. This
name is used as a prefix for all the files produced by the simulation.
For example:

Run_Name
dee.out

Cassandra will then use dee.out as prefix for all output files
created.

Simulation Type

Sim_Type

Character

Sets the ensemble (and thus the suite of moves) of a Cassandra
simulation. The following ensembles are supported:

	nvt or nvt_mc (canonical ensemble)

	npt or npt_mc (isothermal-isobaric ensemble)

	gcmc (grand canonical ensemble)

	gemc (Gibbs ensemble)

	gemc_npt (Multi-species Gibbs ensemble)

	nvt_min (canonical ensemble, only moves which lower the energy are
accepted)

	fragment or nvt_mc_fragment (canonical ensemble simulation of a
fragment)

	ring_fragment or nvt_mc_ring_fragment (canonical ensemble
simulation of a ring fragment)

	pregen (Read from pregenerated trajectory; see Trajectory Reader)

For example,:

Sim_Type
npt

will run a Monte Carlo simulation in the isothermal-isobaric ensemble in which
the number of molecules of each species \(N\), the pressure \(P\) and
temperature \(T\) are held constant.

Note

Simulation types fragment and ring_fragment are used only for
generating a fragment library.

Number of species

Nbr_Species

Integer

Total number of species in the simulation. For ionic systems, each ion
is counted as a separate species. For example, for a mixture of two
species, use the following:

Nbr_Species
2

VDW Style

VDW_Style

Character(i,1) [Character(i,2) Real(i,3) Real(i,4)/Logical(i,4)]

This keyword specifies the functional form of repulsion dispersion
interactions to be used and if tail corrections are added for box
\(i\). One line is required for each box. Character(i,1)
specifies the van der Waals model and can be lj for a
Lennard-Jones 12-6 potential, mie for a Mie potential, or none
to turn off all repulsion-dispersion interactions. Character(i,2)
and Real(i,3) are required for lj or mie. Character(i,2)
specifies how the Lennard-Jones potential is truncated. Options are
cut, cut_tail, cut_switch, or cut_shift. Refer to
Chapter [Chapter:Force Field] for the functional forms. The other
parameters Real(i,3) and Real(i,4)/Logical(i,4) depend on the
selection of Character(i,2) as described below:

	
cut: This option cuts the potential at the distance specified by
Real(i,3). The fourth parameter is omitted. For example, to simulate one
box with a 14 Å cutoff specify the following:

VDW_Style
lj cut 14.0

Similarly, for a two box simulations such as used in the Gibbs
ensemble where both boxes have a 14 Å cutoff, use the following:

VDW_Style
lj cut 14.0
lj cut 14.0

	
cut_tail: This options cuts the potential off at a distance
corresponding to Real(i,3) and applies analytic tail corrections
to the energy and pressure. An optional fourth argument
Logical(i,4) can be set to true, in which case Real(i,3) is
ignored and the cutoff distance is always set to half of the
simulation box length. The cutoff will change during the course of
the simulation when attempting volume moves. This option is
provided to enable reproduction of literature simulations that use
a cut off distance of half the simulation box length, but its use
is discouraged.

For example, to simulate one box with a 14 Å cutoff using tail
corrections, specify the following:

VDW_Style
lj cut_tail 14.0

For a two box simulation where the first box has a 14 Å cutoff and
the second one has a 20 Å cutoff, use the following:

VDW_Style
lj cut_tail 14.0
lj cut_tail 20.0

	
cut_switch: This option cuts the potential off and smoothly
brings the potential to zero using a spline. The potential is
cutoff and the spline turned on at a distance specified by
Real(i,3) (\(r_{on}\) in Eq [Eq:cut_switch]) and the
potential goes to zero at a distance specified by Real(i,4)
(\(r_{off}\) in Eq [Eq:cut_switch]).

A one box simulation using the cut_switch option would
be specified as follows:

VDW_Style
lj cut_switch 12.0 14.0

In this case, the Lennard-Jones potential would end at 12.0 Å and
be smoothly taken to zero at 14.0 Å. \(r_{on} < r_{off}\) or
Real(i,3) \(<\) Real(i,4).

	
cut_shift: This option cuts the potential off at a distance
specified by Real(i,3) and shifts the entire potential so that at
this distance the potential is zero. The fourth parameter
Real(i,4)/Logical(i,4) is omitted. The functional form of this
potential is given in eq [Eq:cut_shift].

To perform a two box simulation with a cut_shift option in which
both boxes have a 10.5 Å cutoff, use the following:

VDW_Style
lj cut_shift 10.5
lj cut_shift 10.5

Note

For all options, cutoff distances must be less than or equal to
the shortest edge length of a simulation box.

Charge Style

Charge_Style

Character(i,1) [Character(i,2) Real(i,3) Real(i,4)]

Cassandra allows the use of fixed partial charges on atomic centers
using a Coulomb potential of the form given in Eq [Eq:Coulomb]. If
this section is missing from the input file, the electrostatic energy
of the simulation will not be computed. If you do not wish to use a
Coulomb potential for box i, set Character(i,1) to none. If
none is selected for Character(i,1) then Character(i,2),
Real(i,3) and Real(i,4) are omitted.

For example,

Charge_Style
none

should be used if you have no partial charges and are simulating a
single box (or the section can just be omitted).

To compute the electrostatic energy for box i, this section must be
included and Character(i,1) set to coul. For this option,
Character(i,2) can be set to ewald if you want to use an Ewald
sum to compute Coulombic interactions, dsf if you want to use the
Damped Shifted Force method [https://doi.org/10.1063/1.2206581]
by Fennell et al., or it can be set to cut,
in which case the Coulombic interactions will be cut off and the long
range interactions ignored. For the Ewald option, Real(i,3) is the
real space cutoff distance and Real(i,4) specifies the accuracy of
the Ewald summation. A reasonable value for the accuracy is
\(10^{-5}\). Note that the number of reciprocal vectors for the
Ewald summation is determined in the code based on the accuracy
parameter. For more details, see the
paper by Fincham [https://doi.org/10.1080/08927029408022180].

For example,

Charge_Style
coul ewald 12.0 1E-5

will use the Ewald sum for a single box. The real space cutoff will be
12 Å and the accuracy will be \(10^{-5}\). If you have two boxes,
like in a Gibbs ensemble calculation, then you could use the
following:

Charge_Style
coul ewald 12.0 1E-5
coul ewald 30.0 1E-5

This will use an Ewald sum for both boxes. In the first box, the real
space cutoff will be 12 Å while in the second box a larger cutoff of
30 Å will be used.

Note

When performing Gibbs ensemble simulations of vapor-liquid equilibria, the
vapor box is often much larger than the liquid box. In this case, you will
want to use a longer real space cutoff for the larger vapor box to avoid
using too many reciprocal space vectors.

Note

Also note that the real space cutoffs must always be less than or equal to
half of the shortest edge length of a simulation box.

If you wish to use the Damped Shifted Force method, the entry
Real(i,3) is the electrostatic energy cutoff distance and
Real(i,4) is an optional entry to specify the damping parameter. If
not specified, Cassandra will set this value algorithmically from the
cutoff radius. For example,

Charge_Style
coul dsf 12.0 0.20

will use the Damped Shifted Force method for a single box. The
electrostatic energy cutoff will be set to 12 Å and the damping
parameter will be set to 0.20, which is a reasonable value for typical
liquid phase simulations.

Note

If the cutoff in VDW_Style is set to half of the simulation box length,
any cutoff distance specified in the Charge_Style section will default to
the half of the simulation box length. In the case of Ewald summation,
however, the accuracy will be the same as Real(i,4).

Mixing Rule

Mixing_Rule

Character

Sets the method by which van der Waals interactions between unlike atoms are
calculated. Acceptable options are lb for Lorentz-Berthelot, geometric
for geometric mixing rule and custom for allowing the user to provide
specific values. To use either lb or geometric keywords with the Mie
potential, all atomtypes must have the same repulsive and dispersive exponents.
If this section is missing, lb is used as default.

To illustrate the use of the custom option, consider a mixture of methane
(species 1) and butane (species 2) united atom models using a Lennard-Jones
potential. Methane has a single atomtype, CH4. Butane has two atomtypes:
pseudoatoms 1 and 4 are type CH3, pseudoatoms 2 and 3 are type CH2. The cross
interaction table is as follows:

Mixing_Rule
custom
CH4 CH3 120.49 3.75
CH4 CH2 82.51 3.83
CH3 CH2 67.14 3.85

The order in which atom types are listed is unimportant, but the atom
types must match exactly the types given in each MCF. The
Lennard-Jones potential requires two parameters: an energy parameter
with units K, and a collision diameter with units Å. The Mie potential
requires four parameters: an energy parameter with units K, a
collision diameter with units Å, a repulsive exponent, and a
dispersive exponent.

Starting Seed

Seed_Info

Integer(1) Integer(2)

Inputs for the starting random number seeds for the simulation. Cassandra uses
a random number generator
proposed by L’Ecuyer [https://doi.org/10.1090/S0025-5718-99-01039-X],
which takes five seeds to calculate a random number, out of which
three are defined internally while two Integer(1)
and Integer(2) are supplied by the user.

As an example,

Seed_Info
1244432 8263662

Note

Note that two independent simulations can be run using the same input
information if different seeds are used. If two simulations having exactly
the same input information and the same seeds are run, the results will be
identical.

Note

When a ‘checkpoint’ file is used to restart a simulation (see # Start_Type
below), the user supplied seeds will be overwritten by those present in the
checkpoint file. If # Start_Type is read_config, then the seeds
specified in the input file are used.

Minimum Cutoff

Rcutoff_Low

Real

Sets the minimum allowable distance in Å between two atoms. Any MC move
bringing two sites closer than this distance will be immediately rejected. It
avoids numerical problems associated with random moves that happen to place
atoms very close to one another such that they will have unphysically strong
repulsion or attraction. This distance must be less than the intramolecular
distance of all atoms in a species which are not bonded to one another. For
models that use dummy sites without explicitly defining bonds between dummy and
atomic sites of the molecules (for example, the TIP4P water model), it is
important that the minimum distance is set to be less than the shortest
distance between any two sites on the molecule. For most systems, 1 Å seems to
work OK, but for models with dummy sites, a shorter value may be required.

Pair Energy Storage

Pair_Energy

Logical

Cassandra can use a time saving feature in which the energies between
molecules are stored and used during energy evaluations after a move,
thereby saving a loop over all molecules. This requires more memory,
but it can be faster. The default is to not use this feature. If you
wish to use this, set Logical to true.

Molecule Files

Molecule_Files

Character(i,1) Integer(i,2)

This specifies the name of the molecular connectivity file (MCF) and
the maximum total number of molecules of a given species specified by
this MCF. A separate line is required for each species present in the
simulation. Character(i,1) is the name of the MCF for species i.
Integer(i,2) is the maximum number of molecules expected for the
species.

For example,

Molecule_Files
butane.mcf 100
hexane.mcf 20
octane.mcf 5

specifies that there are three different species, and the MCFs state
the names of the files where information on the three species can be
found. Species 1 is butane, species 2 is hexane and species 3 is
octane. There can be a maximum of 100 butane molecules, 20 hexane
molecules and 5 octane molecules in the total system. The maximum
number of molecules specified here will be used to allocate memory for
each species, so do not use larger numbers than are needed.

Simulation Box

Box_Info

Integer(1)

Character(i)

Real(i,1) [Real(i,2) Real(i,3)]

[restricted_insertion Character(1) Real(1) [Real(2)]]

This section sets parameters for the simulation boxes. Integer(1)
specifies the total number of boxes in the simulation. Gibbs ensemble
simulations must have two boxes. Character(i) is the shape of the
\(i\)th simulation box. The supported keywords are cubic,
orthogonal, and cell_matrix.

If Character(i) is cubic, Real(i,1) is the length of the box
edges in Å. Information for additional boxes is provided in an
analogous fashion and is separated from the previous box by a blank
line. For a two box simulation, box information is given as:

Box_Info
2
cubic
30.0

cubic
60.0

This will construct a 30 x 30 x 30 Å cube and the second a 60 x 60 x
60 Å cube.

The options orthogonal and cell_matrix are only supported for
constant volume simulations (i.e. NVT or GCMC) which only have 1 box.
If Character(1) is orthogonal, Real(1,1) Real(1,2) Real(1,3)
are the length, width and height that define the simulation box. For
example,

Box_Info
1
orthogonal
30.0 35.0 40.0

This will create a simulation box with dimensions 30.0 x 35.0 x 40.0
Å.

A non-orthogonal box is created by setting Character(1) to
cell_matrix. In this case, three basis vectors are needed to
define the simulation box. Each vector is entered as a column of a 3x3
matrix. For example,

Box_Info
1
cell_matrix
30 0 0
0 35 0
0 2 40

defines a simulation box with basis vectors (30, 0, 0), (0, 35, 2) and
(0, 0, 40).

The optional keyword restricted_insertion is used to define a region
inside the simulation box in which molecules will be inserted at start-up
via make_config or add_to_config or throughout the simulation via
grand canonical insertion moves or Gibbs ensemble swap moves.
If restricted_insertion is specified, Character(1) takes one of
several options: sphere, cylinder, slitpore, or interface.
Each option requires additional parameters, as follows:

	
sphere r, where r is the radius of a sphere centered at the origin

	
cylinder r, where r is the radius of a cylinder centered on the z-axis

	
slitpore z_max, where z_max is half the height of a rectangular prism

centered on the xy-plane

	
interface z_min z_max, which defines two rectangular prisms that span

the box in the x and y directions. One box has bounds z_min < z < z_max
and the other has bounds -z_max < z < -z_min.

For example, to make a spherical droplet with a radius of 5 Å in cubic box
with 100 Å side lengths:

Box_Info
1
cubic
100
restricted_insertion sphere 5.0

In addition, the insertion method for each species must be identified in the
Start_Type or Move_Probability_Info sections.

Temperature

Temperature_Info

Real(i)

Real(i) is the temperature in Kelvin for box \(i\). For GEMC,
the temperature of box 2 will be read from a second line:

Temperature_Info
300.0
300.0

Pressure

Pressure_Info

Real(i)

Real(i) is the pressure setpoint in bar for box \(i\). For GEMC,
the pressure of box 2 will be read from a second line:

Pressure_Info
1.0
1.0

If the simulation type does not require an input pressure (e.g., NVT),
this section will be ignored.

Chemical Potential

Chemical_Potential_Info

Real(1) … Real(n)

where n is the number of insertable species and Real(i) is the
chemical potential setpoint (shifted by a species-specific constant)
of insertable species i in kJ/mol. Each chemical potential will be
assigned in the order species appear in the Molecule_Files
section. For species with insertion method none, the chemical
potential can be listed as none or omitted. This section is only read
for grand canonical simulations. See Eq. ([eq:muShift]) for more
information. For example, the adsorption of methane (species 2) in a
zeolite (species 1) can be computed by inserting methane molecules
into a box with a zeolite crystal. In this example, only one chemical
potential (for methane) is required and the following are equivalent:

Chemical_Potential_Info
-35.0

Chemical_Potential_Info
none -35.0

Warning

Specifying the chemical potential as 0.0 is not the same as
none.

Move Probabilities

Move_Probability_Info

[subsections]

Done_Probability_Info

This section specifies the probabilities associated with different
types of MC moves to be performed during the simulation. The section
begins with the header # Move_Probability_Info and is terminated by
the footer # Done_Probability_Info. All the move probability
subsections must be between the section header and footer.

Note

If the move probabilities do not sum to 1.0, then the probability of
each move will be divided by the total.

Translation

Prob_Translation

Real(1)

Real(i,1) … Real(i,n) *One line required for each box \(i\)

where \(n\) is the number of species. Real(1) is the probability
of performing a center of mass translation move. Real(i,j) is the
maximum displacement in Å of species \(j\) in box \(i\). This
subsection is optional in all ensembles.

For example, if you have three species and two boxes, you could
specify the translation probability as:

Prob_Translation
0.25
2.0 2.5 1.0
12.0 12.0 12.0

This will tell Cassandra to attempt center of mass translations 25% of
the total moves. For box 1, the maximum displacement will be 2.0 Å for
species 1, 2.5 Å for species 2, and 1.0 Å for species 3. For box 2,
the maximum displacement for all species is 12.0 Å.
For a simulation that involves solid frameworks, set the maximum
displacement of the solid species to zero. Every molecule in the
simulation with a maximum displacement greater than zero has an equal
chance of being moved.

Rotation

Prob_Rotation

Real(1)

Real(i,1) … Real(i,n) *One line required for each box \(i\)

where \(n\) is the number of species. The probability of performing a
rotation move is specified by Real(1) while Real(i,j) denotes the maximum
rotation for species \(j\) in box \(i\) in degrees about the x, y or
z-axis. The axis will be chosen with uniform probability. This subsection is
optional for all ensembles.

For example, if you are simulating a single species in two boxes, you could
specify the rotational probability as:

Prob_Rotation
0.25
30.0 180.0

Twenty-five percent of the attempted moves will be rotations. Molecules in box
1 will be rotated a maximum of 30 around the x, y, or z-axis. Molecules in box
2 will be rotated a maximum of 180 around the x, y, or z-axis.

If all species are point particles (such as single-site Lennard-Jones
particles), this section should be omitted. For a multi-species system, set
Real(i,j) to zero for point particles and solid frameworks.

Linear molecules are a special case. A molecule is identified as
linear if all angles in the MCF are fixed at 180. If a linear molecule
were aligned with the axis of rotation, then the molecular orientation
would not be changed. Therefore, linear molecules are rotated by
choosing a random unit vector with uniform probability without regard
to the molecule’s current orientation or the maximum rotation. As with
non-linear molecules, if Real(i,j) is zero, no molecules of species
\(j\) will be rotated.

For a single box simulation of a non-linear molecule (species 1), a
linear molecule (species 2), and a point particle (species 3), you
could specify:

Prob_Rotation
0.25
30.0 10.0 0.0

Molecules of species 1 will be rotated a maximum of 30 around the x, y
or z-axis, molecules of species 2 will be rotated by choosing a random
unit vector, and the point particles will not be rotated.

Angle

Prob_Angle

Real(1)

A molecule will be selected at random and its angle will be perturbed based on
its Boltzmann weighted distribution. The probability of attempting this move is
the only required input. It is specified by Real(1).

For example,

Prob_Angle
0.3

tells Cassandra to attempt angle moves 30% of the total moves for all molecules
containing angles within a given box.

Note

Note that this move is rarely needed since the fragment
libraries should already provide efficient sampling of angles. This
move, however, may improve sampling of angles for large molecules in
the case where parts of its fragments are rarely regrown by a regrowth
move.

Dihedral

Prob_Dihedral

Real(1)

Real(1) … Real(n)

The probability of performing a dihedral move is specified by
Real(1) while Real(n) denotes the maximum width of a dihedral
angle displacement for each species. The maximum width is given in
degrees.

For example,

Prob_Dihedral
0.3
20 0.0

tells Cassandra to attempt dihedral moves 30% of the total moves for all
molecules containing dihedrals within a given box. The maximum dihedral width
will be 20 for species 1 and 0.0 for species 2. Since the maximum dihedral
width of species 2 is set to 0.0 in both boxes, no dihedral moves will be
attempted on species 2. Note that a single max dihedral width is provided, even
if species 1 may contain many dihedrals. This is also true for simulations with
more than one box. Also note that the same max dihedral width is used for
systems containing more than one box.

Note

Note that this move is rarely needed since the regrowth moves
should already provide efficient sampling of dihedrals. This move,
however, may improve sampling of dihedrals for large molecules in the
case where the parts of its fragments are rarely regrown (albeit a
small maximum width is provided).

Regrowth

Prob_Regrowth

Real(1)

Real(2,1) … Real(2,n)

where \(n\) is the number of species. A regrowth move consists of deleting
part of the molecule randomly and then regrowing the deleted part via
configurational bias algorithm. This can result in relatively substantial
conformational changes for the molecule, but the cost of this move is higher
than that of a simple translation or rotation. The probability of attempting a
regrowth move is specified by Real(1) while Real(2,i) specifies the
relative probability of performing this move on species \(i\). The relative
probabilities must sum to 1 otherwise Cassandra will quit with an error. This
subsection is optional for all ensembles.

For example, if simulating 70 molecules of species 1 and 30 molecules of
species 2, you could specify the following:

Prob_Regrowth
0.3
0.7 0.3

Thirty percent of the attempted moves will be regrowth moves. Seventy percent
of the regrowth moves will be attempted on a molecule of species 1 and the
balance of regrowth moves on a molecule of species 2.

Note

Real(2,i) should be set to zero for monatomic, linear, or rigid
species, including solid frameworks.

Volume

Prob_Volume

Real(1)

Real(2)

[Real(3)]

Real(1) is the relative probability of attempting a box volume
change. Since volume changes are computationally expensive, this
probability should normally not exceed 0.05 and values from 0.01-0.03
are typical. Real(2) is the maximum volume displacement in
Å3 for box 1. Real(3) is the maximum volume displacement
in Å3 for box 2, and is only required for GEMC-NPT
simulations. The attempted change in box volume is selected from a
uniform distribution. This subsection is required for NPT, GEMC-NPT
and GEMC-NVT simulations.

For example, if you are simulating a liquid with a single box in the NPT
ensemble, the following:

Prob_Volume
0.02
300

tells Cassandra to attempt volume moves 2% of the total moves. The box volume
would be changed by random amounts ranging from -300 Å3 to +300 Å3. For a liquid box 20 Å per side, this would result in a maximum box
edge length change of about 0.25 Å, which is a reasonable value. Larger volume
changes should be used for vapor boxes. If you wish to perform a GEMC-NPT
simulation, you might specify the following:

Prob_Volume
0.02
300
5000

This tells Cassandra to attempt volume moves 2% of the total moves. The first
box volume (assumed here to be smaller and of higher density, such as would
occur if it were the liquid box) would be changed by random amounts ranging
from -300 Å\(^3\) to +300 Å\(^3\). The second box volume would be
changed by random amounts ranging from -5000 Å\(^3\) to +5000 Å\(^3\). As with all move probabilities, you can experiment with making
larger or smaller moves. Note that if the # Run_Type is equilibration,
Cassandra will attempt to optimize the magnitude of the volume change to
achieve about 50% acceptance rates.

Note

The volume perturbation move is only supported for cubic boxes.

Insertion and Deletion Moves

Prob_Insertion

Real(1)

Character(2,1) … Character(2,n)

where \(n\) is the number of species. Real(1) sets the probability of
attempting insetion moves. Character(2,i) is the insertion method and can be
either cbmc, none, or restricted. If cbmc, species \(i\)
will be inserted by assembling its fragments using configurational bias
Monte Carlo. If none, species \(i\) will not be inserted or deleted.
If restricted, species \(i\) will be assembled using CBMC with the
first fragment inserted into the region defined by the restricted_insertion
keyword in the # Box_Info section. This subsection is required for
GCMC simulations.

Warning

Restricted insertions should only be used if the
relevant molecules cannot escape the restricted region during
the simulation. If this condition is not met the acceptance criteria
for molecule deletion will be incorrect and the ensemble will not be
properly sampled.

If there is more than one insertable species, each is chosen for an insertion
attempt with equal probability. For example, if you are performing a GCMC
simulation with two species that can be inserted, you might specify the
following:

Prob_Insertion
0.1
cbmc cbmc

This tells Cassandra to attempt insertions 10% of the total moves
and both species will be inserted using CBMC. If only species 1 is to
be inserted or deleted, use:

Prob_Insertion
0.1
cbmc none

Prob_Deletion

Real(1)

Real(1) is the probability of attempting to delete a molecule during a
simulation, and must match the insertion probability to satisfy microscopic
reversibility. The molecule to delete is selected by first choosing a species
with uniform probability, and then choosing a molecule of that species with
uniform probability. If a species has the insertion method none, no attempt
is made to delete it. This subsection is required for GCMC simulations.

Prob_Swap

Real(1)

Character(2,1) … Character(2,n)

[prob_swap_species Real(3,1) … Real(3,n)]

[prob_swap_from_box Real(4,1) … Real(4,i)]

where \(n\) is the number of species and \(i\) is the number of boxes.
Real(1) is the probability of attempting to transfer a molecule from one box
to another. Similar to the # Prob_Insertion subsection, Character(2,i) is
the insertion method and can be cbmc, none, or restricted. If cbmc, species
\(i\) will be inserted by assembling its fragments using configurational
bias Monte Carlo. If none, species \(i\) will not be transferred
between boxes. If restricted, species \(i\) will be assembled using CBMC with the
first fragment inserted into the region defined by the restricted_insertion
keyword in the # Box_Info section. This subsection is required for
GEMC simulations.

Warning

Restricted insertions should only be used if the
relevant molecules cannot escape the restricted region during
the simulation. If this condition is not met the acceptance criteria
for molecule deletion will be incorrect and the ensemble will not be
properly sampled.

For example, while performing a GEMC simulation for three species the first two
of which are exchanged while the third is not, specify the following:

Prob_Swap
0.1
cbmc cbmc none

This tells Cassandra to attempt swap moves 10% of the total moves. Attempts
will be made to transfer species 1 and 2 between available boxes while
molecules of species 3 will remain in the boxes they are present in at the
start of the simulation.

By default, a molecule is chosen for the attempted swap with uniform
probability (amongst swappable molecules). As a result, if one species has a
much higher mole fraction in the system (e.g. if calculating methane solubility
in liquid water), then most attempted swaps will be of the more abundant
species. This behavior can be changed by using the optional keywords
prob_swap_species and prob_swap_from_box.

The keyword prob_swap_species must be given with \(n\) options:
Real(3,j) is the probability of selecting species \(j\). The keyword
prob_swap_from_box must be given with \(i\) options: Real(4,j) is the
probability of selecting a molecule from box \(j\). For example, to select
a molecule of species 1 for 90% of attempted swaps and to select box 2 as the
donor box for 75% of attempted swaps, use:

Prob_Swap
0.1
cbmc cbmc none
prob_swap_species 0.9 0.1 0.0
prob_swap_from_box 0.25 0.75

The probability of selecting a species with insertion method none must be 0.

Ring Flip Move

Prob_Ring

Real(1) Real(2)

This subsection is used when flip moves are to be attempted to sample bond
angles and dihedral angles in a ring fragment. For more details on this move
see Shah and Maginn [https://doi.org/10.1063/1.3644939].
The relative probability of attempting
a flip move is specified by Real(1) while the maximum angular displacement in
degrees for the move is given by Real(2). For example, if the flip is to be
attempted 30% of the time and the maximum angular displacement for the move is
20 specify the following:

Prob_Ring
0.30 20.0

Note

Note that this subsection is used only in input files that generate
configuration libraries of ring moieties. The input file of the actual
simulation would involve the # Prob_Regrowth keyword.

Start Type

Start_Type

Character(1)

[Character(2)]

[insertion Character(3,1), Character(3,2), Character(3,n)]

This section specifies whether Cassandra generates an initial
configuration or uses a previously generated configuration to start a
simulation. Character(1) [Character(2)] can be one of four keywords:
make_config, read_config, add_to_config, or checkpoint.

The keyword insertion is optional and is only meaningful if used in conjunction
with the keyword restricted_insertion in the Box_Info section and
either the make_config or add_to_config keywords in this section.
Character(3,i) is the insertion method for species \(i\) and can be
one of the following options: cbmc, none, or restricted.
If cbmc, species \(i\) will be assembled using configurational
bias Monte Carlo. If none, species \(i\) will not be inserted.
If restricted, species \(i\) will be assembled using CBMC
with the first fragment inserted into the region defined by
the restricted_insertion keyword in the Box_Info section.

make_config and add_to_config are options to construct an
initial configuration by inserting a specified number of molecules
of each species. Each molecule is inserted using configuration bias
Monte Carlo, using kappa_ins trial locations for the first fragment
and kappa_dih trial rotations for each additional fragment. Trial
locations and rotations that place two atoms closer than Rcutoff_Low
have zero weight. Otherwise the weight of the trial location is computed as
discussed in Inserting a Molecule with Configurational Bias Monte Carlo and one trial is selected proportionate
to its weight. If all trial locations have zero weight, the insertion is
rejected and re-attempted.

Warning

If the specified initial density is too high the code may get stuck
attempting to generate an initial configuration.

Warning

The make_config and add_to_config options do not utilize a chemical
potential or compute the change in energy from inserting the fully assembled
molecule. As a result, these routines will allow the user to insert more
molecules than are thermodynamically reasonable at finite temperature or
finite chemical potentials. This can become problematic when deleting
molecules in GCMC and GEMC simulations. If the energy required to insert
a molecule back into the location it’s being deleted from is greater than
+708 kT, Cassandra will abort with a “Attempted to delete molecule…but the
molecule energy is too high” error message.

	
make_config will generate an initial configuration using a
configurational biased scheme. The number of molecules of each
species is specified as follows:

make_config Integer(1) … Integer(n)

where n is the number of species and Integer(i) is the number
of molecules of species \(i\) to insert into the box. This
keyword can be repeated for each box. For example, to generate an
initial configuration with 100 molecules of species 1 and 75
molecules of species 2:

Start_Type
make_config 100 75

If the simulation also has a second box with 25 molecules of
species 2 only:

Start_Type
make_config 100 75
make_config 0 25

	
read_config will use the coordinates from a .xyz file. For
example, a configuration generated at one temperature may be used
to initiate a simulation at another temperature. After read_config,
the number of molecules of each species must be given, followed by
the .xyz filename:

read_config Integer(1) … Integer(n) Character(1)

where n is the number of species, Integer(i) is the number of
molecules of species \(i\) to read from file Character(1).
This keyword can be repeated for each box. For example, to start a
simulation using a configuration of 50 molecules each of species 1
and 2:

Start_Type
read_config 50 50 liquid.xyz

If the simulation also has a second box with 10 molecules of
species 1 and 90 molecules of species 2:

Start_Type
read_config 50 50 liquid.xyz
read_config 10 90 vapor.xyz

The .xyz files must have the following format:

<number of atoms>
comment line
<element> <x> <y> <z>
...

Note

The input .xyz file must not contain molecules with broken bonds.
For instance, a valid .xyz file for a long linear hydrocarbon can contain
some of its atoms outside the box boundaries.

An invalid .xyz file would contain coordinates “wrapped” across box boundaries,
causing unphysically long bonds.

Cassandra checks that the bonds computed in the initial configuration match those
provided in the MCF. If an invalid .xyz is provided, long bonds would be measured
and Cassandra would throw an error at the beginning of the simulation.

	
add_to_config will read the coordinates from an .xyz file,
but then insert additional molecules. After add_to_config specify
the number of molecules of each species to be read, followed by the
.xyz filename, followed by the number of molecules of each species
to be added:

add_to_config Integer(1) … Integer(n) Character(1)
Integer(n+1) … Integer(2n)

where n is the number of species, Integer(1) through
Integer(n) are the number of molecules of each species to read
from file Character(1), and Integer(n+1) through Integer(2n)
are the number of molecules of each species to add to the
configuration. This keyword can be repeated for each box. For
example, to start a simulation by reading in a zeolite (speces 1)
configuration and adding 30 molecules of methane (species 2):

Start_Type
add_to_config 1 0 MFI.xyz 0 30

where the file MFI.xyz contains the coordinates of a unit cell
of MFI silicalite.

	
checkpoint this keyword is used to restart a simulation from
a checkpoint file. During the course of a simulation, Cassandra
periodically generates a checkpoint file (*.chk) containing
information about the total number of translation, rotation and
volume moves along with the random number seeds and the coordinates
of each molecule and its box number at the time the file is
written. Cassandra provides the capability of restarting from this
state point in the event that a simulation crashes or running a
production simulation from an equilibrated configuration. For this
purpose, in addition to the checkpoint keyword, additional
information in the form of the name of the checkpoint file
Character(1) is required in the following format:

checkpoint Character(1)

For example, to continue simulations from a checkpoint file
methane_vle_T148.chk, you might specify:

Start_Type
checkpoint methane_vle_T148.chk

Note

Note that when a checkpoint file is used to restart a simulation,
the seeds for random number generation supplied by the user will be
overwritten by those present in the checkpoint file. By contrast,
if # Start_Type is read_config, then the seeds specified
in the input file are used.

Note

Unless starting from a checkpoint file, input files for a multi-box
simulation must have one line for each box in the Start_Type
section. Each line can start with a different keyword. For example, a
GEMC simulation of a water(1)-methane(2) mixture can begin from an
equilibrated water box and a new vapor box:

Start_Type
read_config 100 0 water.xyz
make_config 50 50

Run Type

Run_Type

Character(1) Integer(1) [Integer(2)]

This section is used to specify whether a given simulation is an equilibration
or a production run. For an equilibration run, the maximum translational,
rotational, torsional and volume widths (for an NPT or a GEMC simulation) are
adjusted to achieve 50% acceptance rates. During a production run, the maximum
displacement width for different moves are held constant.

Depending on the type of the simulation, Character(1) can be set to either
equilibration or production. For an equilibration run, Integer(1)
denotes the number of MC steps performed for a given thermal move before the
corresponding maximum displacement width is updated. Integer(2) is the number
of MC volume moves after which the volume displacement width is updated. This
number is optional if no volume moves are performed during a simulation (for
example in an NVT or a GCMC simulation). When the run type is set to
production, Integer(1) and Integer(2) refer to the frequency
at which the acceptance ratios for thermal and volume moves will be
output to the log file. These acceptance rates should be checked to make
sure proper sampling is achieved.

For an NPT equilibration run in which the widths of the thermal move are to be
updated after 1000 MC moves and maximum volume displacements after 100 volume
moves, specify the following:

Run_Type
equilibration 1000 100

For an NVT production run in which the acceptance ratios of various thermal
moves are printed to the log file after every 250 MC steps of a given thermal
move, use the following:

Run_Type
production 250

Simulation Length

Simulation_Length_Info

units Character(1)

prop_freq Integer(2)

coord_freq Integer(3)

run Integer(4)

[steps_per_sweep Integer(5)]

[block_averages Integer(6)]

This section specifies the frequency at which thermodynamic properties and
coordinates are output to a file. The units keyword determines the method
by which the simulation is terminated and data is output. Character(1) can
be minutes, steps, or sweeps. Thermodynamic quantities are output every
Integer(2) units, coordinates are written to the disk every Integer(3)
units and the simulation will stop after Integer(4) units.

If Character(1) is minutes, then the simulation runs for a specified time.
For example, to run a simulation for 60 minutes with thermodynamic properties
written every minute and coordinates output every 10 minutes, use:

Simulation_Length_Info
units minutes
prop_freq 1
coord_freq 10
run 60

If Character(1) is steps, the simulation runs for a specified number of MC
steps. An MC step is defined as a single MC move, regardless of type and
independent of system size. To run a simulation of 50,000 steps such that
thermodynamic quantities are printed every 100 MC steps and coordinates are
output every 10,000 steps, use:

Simulation_Length_Info
units steps
prop_freq 100
coord_freq 10000
run 50000

If Character(1) is sweeps, the simulation runs for a specified number of MC
sweeps. The number of MC steps per sweep can be defined using the optional
keyword steps_per_sweep. The default steps_per_sweep value is the sum
of the weights of each move type. A sweep is typically defined as the number of
MC moves needed for every move to be attempted for every molecule.

For example, in a water box of 100 molecules in the NPT ensemble, a sweep would
be 201 moves-100 translations, 100 rotations and 1 volume change. To run a
simulation of 1,000 sweeps with thermodynamic quantities are printed every 100
sweeps and coordinates are output every 100 sweeps, use the following:

Simulation_Length_Info
units sweeps
prop_freq 100
coord_freq 100
run 1000
steps_per_sweep 201

The optional keyword block_avg_freq switches the thermodynamic output from
instantaneous values to block average values, where Integer(6) is the number
of units per block. The number of blocks is given by Integer(4)/Integer(6)
and the number of data points per block is Integer(6)/Integer(2). For
example, during a run of 1,000,000 steps, with properties computed every 100
steps and averaged every 100,000 steps, specify:

Simulation_Length_Info
units steps
run 1000000
block_avg_freq 100000
prop_freq 100
coord_freq 100

This simulation will output 10 averages, and each average will be computed from
1000 data points.

Pregenerated Trajectory

Pregen_Info

Character(i,1) Character(i,2) *One line for each box i

This section specifies the paths to the .H and .xyz files storing the
pregenerated trajectory to be read. Character(i,1) specifies the path to the
.H file for box i and Character(i,2) specifies the .xyz
file for box i. Descriptions of these file types can be found in
Cassandra Output Files.

For example, to read a pregenerated trajectory from md_trajectory.H
and md_trajectory.xyz, the section could be written as follows:

Pregen_Info
md_trajectory.H md_trajectory.xyz

To read a pregenerated trajectory from gemc_trajectory.box1.H and
gemc_trajectory.box1.xyz for box 1 and from gemc_trajectory.box2.H
and gemc_trajectory.box2.xyz for box 2, the section could be written
as follows:

Pregen_Info
gemc_trajectory.box1.H gemc_trajectory.box1.xyz
gemc_trajectory.box2.H gemc_trajectory.box2.xyz

Widom Insertion

Widom_Insertion

[Logical]

Character(i,j,1) [Integer(i,j,2) Integer(i,j,3)] [Integer(i,j,4)] *One entry for each box j

*One line for each species i

This section specifies which species will be used for Widom insertions and
how many times, how often, and in which boxes they will have Widom insertions.
If the section is omitted, no Widom insertions will be performed.
Otherwise, if Logical is true or omitted, Widom insertions are enabled.
If Logical is false, Widom insertions are disabled and the rest of the section is ignored.

Character(i,j,i) specifies whether there are Widom insertions of species i
in box j. Character(i,j,1) is none if species i has no
Widom insertions in box j, in which case Integer(i,j,2) and
Integer(i,j,3) are ignored and may be omitted. If Character(i,j,1) is
cbmc, then species i has Integer(i,j,2) Widom insertions every
Integer(i,j,3) MC steps (or MC sweeps if sweeps are the units defined in
section # Simulation_Length_Info as described in
Simulation Length) in box j. Units of time are not
supported for Integer(i,j,3), and if they are specified as the units,
Integer(i,j,3) will still be in units of MC steps.

Integer(i,j,4) may optionally be included with a positive value to make Cassandra write
a .wprp2 file for species i and box j, where each group of Integer(i,j,2)
Widom insertions is split into Integer(i,j,4) subgroups with an equal number of
Widom insertions. If Integer(i,j,2) is not divisible by Integer(i,j,4), the last remainder
of the Integer(i,j,2) Widom insertions is ignored for the .wprp2 file but not for the .wprp
file and computed shifted chemical potential for species i and box j. Additional details on
the .wprp2 files are given in Cassandra Output Files.

For example, for a simulation with one box and two species, in which species 1 is to be inserted
5000 times every 1000 steps and species 2 is to be inserted 7000 times every 400 steps,
this section could be written as follows:

Widom_Insertion
true
cbmc 5000 1000
cbmc 7000 400

For a simulation with two boxes and two species, for which the simulation length units
are sweeps, where species 1 will have 300 Widom insertions every 50 sweeps in box 2
but none in box 1 and species 2 will have 7000 Widom insertions every 350 sweeps in box 1
and 200 Widom insertions every 30 sweeps in box 2, this section could be written as follows:

Widom_Insertion
none cbmc 300 50
cbmc 7000 350 cbmc 200 30

Cell List Overlap Detection

Cell_List_Overlap

Logical

To enable cell list-based core overlap detection for Widom insertions,
Logical should be true. This requires more memory, but lets Cassandra more quickly
detect core overlap without wasting CPU time computing any energies for trial postions with core overlap.
This results in a dramatic speed boost for Widom insertions in dense media such as liquids, where
most trial positions have core overlap. This method only supports cubic boxes and orthogonal boxes.

Property Output

Property_Info Integer(i)

Character(j) *One line for each property \(j\)

This section provides information on the properties that are output.
More than one section is allowed for multiple boxes. In this case,
each section is separated by a blank line. Integer(i) is the
identity of the box for which the properties are desired.
Character(i,j) is the property that is to be output. Each property
is specified on a separate line.

All energies are in kJ/mol and are extensive, i.e. if the numbers
of molecules in a simulation are doubled, the magnitude of the energy
will also double. The kJ unit of energy is the right order of
magnitude for molar quantities, \(\mathcal{O}(10^{23})\) molecules. Cassandra
is designed for simulations of \(\mathcal{O}(100 − 1000)\) molecules, which will
have much smaller internal energies, \(\mathcal{O}(10^{-21})\) kJ. Rather than report
energies in zeptojoules or eV, we have opted to multiply the energies
by Avogadro’s number. Or, equivalently, you can interpret the output
energies as the energy for a mole of simulation boxes. To get extensive
energies in kJ, divide the output energies by Avogadro’s number.
To get intensive energies in kJ/mol, divide the output energies by
the number of molecules (only strictly valid for single species
simulations). The following components of the energy can be output:

	energy_total: total energy of the system, the sum of energy_intra and energy_inter

	energy_intra: intramolecular energy, the sum of the following terms:

	energy_bond: bond energy

	energy_angle: angle energy

	energy_dihedral: dihedral energy

	energy_improper: improper energy

	energy_intravdw: intramolecular van der Waals energy

	energy_intraq: intramolecular electrostatic energy. In the case of Ewald and DSF methods, this is the real-space intramolecular electrostatic energy.

	energy_inter: intermolecular energy, sum of the following terms:

	energy_intervdw: intermolecular van der Waals energy

	energy_lrc: long range tail correction for the truncated van der Waals energy

	energy_interq: intermolecular electrostatic energy. In the case of Ewald and DSF methods, this is the real-space intermolecular electrostatic energy.

	energy_recip: electrostatic reciprocal energy, for Ewald and DSF methods

	energy_self: electrostatic self energy, for Ewald method

Additional supported keywords are:

	enthalpy: Enthalpy of the system, in kJ/mol (extensive). The enthalpy
is computed using the pressure setpoint for isobaric simulations and
the computed pressure for all other ensembles.

	pressure: Pressure of the system, in bar

	pressure_xx: the xx-component of the pressure tensor, in bar

	pressure_yy: the yy-component of the pressure tensor, in bar

	pressure_zz: the zz-component of the pressure tensor, in bar

	volume: Volume of the system in Å3

	nmols: Number of molecules of each species

	density: Density of each species in Å3

	mass_density: Density of the system in kg/m3

For example, if you would like total energy, volume and pressure of a one box
system to be written, you may specify the following:

Property_Info 1
energy_total
volume
pressure

For a GEMC-NVT simulation, total energy and density of all the species in box 1
and total energy, density of all the species in box 2 along with the pressure
may be output using the following format:

Property_Info 1
energy_total
density

Property_Info 2
energy_total
density
pressure

Fragment Files

Fragment_Files

Character(i) Integer(i) *One line for each fragment \(i\)

In this section, information about the fragment library is specified.
Character(i) gives the location of the fragment library of fragment
\(i\); Integer(i) is the corresponding integer id specifying the
type of the fragment.

Note

This section is automatically generated by library_setup.py. However,
if there is a need to change this section, follow the example given below.

For a simulation involving two species of which the first one contains three
distinct fragments and species 2 has two identical fragments, this section
might look like:

Fragment_Files
frag_1_1.dat 1
frag_2_1.dat 2
frag_3_1.dat 3
frag_1_2.dat 4
frag_1_2.dat 4

This tells Cassandra to use the files frag_1_1.dat, frag_2_1.dat and
frag_3_1.dat for the three fragments of species 1. Since species 2 has two
identical fragment, Cassandra will use the same fragment library frag_1_2.dat
for these fragments.

Verbosity in log file

Verbose_Logfile

Logical

This optional section is used to control the level of detail about the
simulation setup that is output to the log file. Controlling this can be useful
for development purposes. If this section is missing, Logical is set to
false by default. Supported options for Logical are true or
false.

File Info

File_Info

Character

This section is used only while generating a fragment library. Cassandra will
use the filename specified in Character to store different conformations of
the fragment being simulated.

Note

This section is automatically handled
by library_setup.py. However, if the user wishes to modify this part,
use the following template:

File_Info
frag.dat

This tells Cassandra to store the fragment library in the file named frag.dat.

CBMC parameters

CBMC_Info

kappa_ins Integer(1)

kappa_dih Integer(2)

rcut_cbmc Real(3,1) [Real(3,2)]

Cassandra utilizes a configurational bias methodology based on
sampling a library of fragment conformations [https://doi.org/10.1063/1.3644939].
This section sets a number of parameters required for biased insertion/deletion (refer to
the sections # Prob_Insertion, # Prob_Deletion and # Prob_Swap and
configurational regrowth (# Prob_Regrowth).

This section is only required if molecules are regrown, inserted and/or
deleted. Keyword kappa_ins is required if the section # Start_Type is
given with keyword make_config or add_to_config, or if the section #
Sim_Type is gcmc, gemc or gemc_npt.

Keyword kappa_ins is required if section # CBMC_Info is required.
For a biased insertion, a fragment is chosen to insert first in proportion to
the number of atoms in fragment. For example, to insert a united-atom molecule
of ethylbenzene, the ring fragment has 7 pseudoatoms while the other has 3. The
ring fragment will be inserted first with a probability of 0.7. By contrast,
to insert a united-atom molecule of dodecane, all ten fragments have 3
pseudoatoms and so one is chosen with uniform probability. After choosing a
Boltzmann-distributed conformation and an orientation with uniform probability,
Integer(1) trial positions are generated for the center-of-mass of the
fragment. One of the trial positions is then selected randomly based on the
Boltzmann weight of the energy of the trial position.

Keyword kappa_dih is required if any species composed of multiple
fragments is inserted/deleted or regrown. Additional fragments are
added to the growing molecule using Integer(2) trial dihedral angles
that connect the new fragment to the existing part of molecule.

Keyword rcut_cbmc is required if section # CBMC_Info is required.
For all the trials, energy of the partially grown molecule with itself
and surrounding molecules is to be calculated. For this purpose, a
short cutoff is used. Real(4,i) specifies the cutoff distance in
Å for box \(i\). A short cutoff is fast, but might miss some
overlaps. You can experiment with this value to optimize it for your
system.

For a GEMC simulation in which 12 candidate positions are generated
for biased insertion/deletion, 10 trials for biased dihedral angle
selection and the cutoff for biasing energy calculation is set to 5.0
Å in box 1 and 6.5 Å in box 2, this section would look like:

CBMC_Info
kappa_ins 12
kappa_dih 10
rcut_cbmc 5.0 6.5

Molecular Connectivity File

A Molecular Connectivity File (MCF) defines the information related to
bonds, angles, dihedrals, impropers fragments and non bonded
interactions for a given species. One MCF is required for each species
present in the system. The information contained in this file involves
the force field parameters, atoms participating in each of the
interactions and the functional form used in each potential
contribution. The keywords are preceeded by a # and comments follow
a !. Similarly to the input file, the order of the keywords is not
important. A complete list of the keywords is provided below.

Note

MCFs are generated by the script mcfgen.py automatically. The
following description is provided for the users who wish to modify the MCF
or manually write the MCF.

Warning

Parameters for all of the following keywords must be separated by spaces
only. Do not use the tab character.

Atom Info

Atom_Info

Integer(1)

Integer(2) Character(3)*6 Character(4)*2 Real(5) Real(6) Character(7)*20 Optional_Parms Character(fin)

This keyword specifies the information for non-bonded interactions. It
is a required keyword in the MCF. If not specified, the code will
abort. The inputs are specified below:

	Integer(1): Total number of atoms in the species.

	Integer(2): Atom index.

	Character(3)*6: Atom type up to 6 characters. This string of
characters should be unique for each interaction site in the system,
i.e. do not use the same atom type for two atoms in the same (or
different) species unless the (pseudo)atoms have the same atom types.

	Character(4)*2: Atom element name up to 2 characters.

	Real(5): Mass of the atom in amu. Note that for united atom models,
this would be the mass of the entire pseudoatom.

	Real(6): Charge on the atom.

	Character(7): The functional form for van der Waals (vdW)
interactions. Options are LJ for Lennard-Jones, Mie for the Mie
potential, or NONE if the atom type does not have vdW interactions.
LJ and Mie cannot be used in the same simulation. This must match
what is given for # VDW_Style (VDW Style) in
the input file.

	Character(fin): The final entry on the line is ring only if the
atom is part of a ring fragment. Note that a ring fragment is defined
as those atoms that belong to the ring (e.g. in cyclohexane, all the
six carbons) and any atom directly bonded to these ring atoms (e.g.
in cyclohexane, all the hydrogens). In other words, all of the ring
and exoring atoms are given the ring flag. For atoms that are not
part of rings, leave this field blank.

Additional parameters are required for LJ and Mie potentials. For LJ,

	Real(8): The energy parameter in K.

	Real(9): Collision diameter (\(\sigma\)) in Å.

For Mie,

	Real(8): The energy parameter in K.

	Real(9): Collision diameter (\(\sigma\)) in Å.

	Real(10): The repulsive exponent.

	Real(11): The dispersive exponent.

Note

For single-fragment species, the branch point atom
is listed as the first atom.

For example, for a united atom pentane model:

Atom_Info
5
1 CH3_s1 C 15.0107 0.0 LJ 98.0 3.75
2 CH2_s1 C 14.0107 0.0 LJ 46.0 3.95
3 CH2_s1 C 14.0107 0.0 LJ 46.0 3.95
4 CH2_s1 C 14.0107 0.0 LJ 46.0 3.95
5 CH3_s1 C 15.0107 0.0 LJ 98.0 3.75

The number below the keyword # Atom_Info specifies a species with
5 interaction sites, consistent with a united atom pentane model. The
first column specifies the atom ID of each of the pseudo atoms. The
second and third columns provide the atom type and atom name,
respectively. The fourth column represents the atomic mass of each
pseudoatom. Note that the mass of CH3_s1 is 15.0107 for this united
atom model, as it involves a carbon and three hydrogen atoms. The same
applies for all other interaction sites. The fifth column contains the
partial charges placed on each of these pseudoatoms. The sixth,
seventh and eighth columns contain the repulsion-dispersion functional
form, the energy parameter and the collision diameter respectively. In
this case, the usual Lennard-Jones functional form is used. Note that
none of these atoms used the flag ring, as no rings are present in
this molecule.

For a molecule containing rings, for example cyclohexane:

Atom_Info
6
1 CH_s1 C 13.0107 0.0 LJ 52.5 3.91 ring
2 CH_s1 C 13.0107 0.0 LJ 52.5 3.91 ring
3 CH_s1 C 13.0107 0.0 LJ 52.5 3.91 ring
4 CH_s1 C 13.0107 0.0 LJ 52.5 3.91 ring
5 CH_s1 C 13.0107 0.0 LJ 52.5 3.91 ring
6 CH_s1 C 13.0107 0.0 LJ 52.5 3.91 ring

Note

The flag ‘ring’ was appended as the last column for each site in this
cyclic molecule.

For the SPC/E water model:

Atom_Info
3
1 O1_s1 O 16.00 -0.8476 LJ 78.20 3.1656
2 H2_s1 H 1.000 0.4238 NONE
3 H3_s1 H 1.000 0.4238 NONE

Note

This is a molecule with a single fragment, so the branch point atom is
the first atom in the list.

For a single-site model of CO2 using the Mie potential:

Atom_Info
1
1 CO2 C 44.00 0.0 Mie 361.69 3.741 23.0 6.66

where the last two parameters are the repulsive and dispersive
exponents, respectively.

Bond Info

Bond_Info

Integer(1)

Integer(i,2) Integer(i,3) Integer(i,4) Character(i,5) Real(i,6) Real(i,7)

This section provides information on the number of bonds in a molecule
and atoms involved in each bond along with its type. It is a required
keyword in the MCF. If not specified, the code will abort. The inputs
are specified below:

	Integer(1): Total number of bonds in the species. From the next
line onwards, the bonds are listed sequentially and information for
each bond is included on a separate line.

	Integer(i,2): Index of the \(i^{th}\) bond.

	Integer(i,3) Integer(i,4): IDs of the atoms participating in the
bond.

	Character(i,5): Type of the bond. At present only ‘fixed’ is
permitted.

	Real(i,6): Specifies the bond length for a particular bond in Å.

Note

At present, Cassandra simulations can be carried out only
for fixed bond length systems.

For example, for the water model SPC/E, the # Bond_Info section is
the following:

Bond_Info
2
1 1 2 fixed 1.0
2 1 3 fixed 1.0

In the above example, two bonds are specified whose fixed length is
set to 1.0 Å.

Angle Info

Angle_Info

Integer(1)

Integer(i,2) Integer(i,3) Integer(i,4) Integer(i,5) Character(i,6) Real(i,7) Real(i,8)

The section lists the information on the angles in the species. It is
a required keyword in the MCF. If not specified, the code will abort.

	Integer(1): Number of angles in the species.

	Integer(i,2): Index of the \(i^{th}\) angle.

	Integer(i,3) Integer(i,4) Integer(i,5): IDs of the atoms
participating in the \(i^{th}\) angle. Note that Integer(i,4)
is the ID of the central atom.

	Character(i,6): Type of the angle. Currently, Cassandra supports
‘fixed’ and ‘harmonic’ (see Angles) angles.
For the ‘fixed’ option, Real(i,7) is the value of the angle and
Real(i,8) is ignored by the code if specified. In the case of
’harmonic’ potential type, Real(i,7) specifies the harmonic force
constant (\(K/rad^2\)) while Real(i,8) is the nominal bond
angle (in degrees).

For example, for a united atom pentane molecule with flexible angles,
this section is the following:

Angle_Info
3
1 1 2 3 harmonic 31250.0 114.0
2 2 3 4 harmonic 31250.0 114.0
3 3 4 5 harmonic 31250.0 114.0

In the above example, the three angles between the pseudoatoms found
in the pentane model are specified. The three angles have an harmonic
potential, whose force constant is equal and is set to 31250.0
K/rad2. Finally, the equilibrium angle for these angles is
114.0°.

An example for SPC/E water model with fixed angles is:

Angle_Info
1
1 2 1 3 fixed 109.47

This model has only one angle that is set to 109.47°.
No force constant is provided as the angle is fixed.

Dihedral Info

Dihderal_Info

Integer(1)

Integer(i,2) Integer(i,3) Integer(i,4) Integer(i,5) Integer(i,6) Character(i,7) Real(i,8) Real(i,9) Real(i,10) Real(i,11)

This section of the MCF lists the number of dihedral angles and
associated information for a given species. It is a required keyword
in the MCF. If not specified, the code will abort.

	Integer(1): Lists the number of dihedral angles.

	Integer(i,2): Index of the \(i^{th}\) dihedral angle.

	Integer(i,3): Integer(i,6) - IDs of the atoms in the \(i^{th}\)
dihedral angle.

	Character(i,7) : Dihedral potential type. Acceptable options are OPLS,
CHARMM, harmonic and none. If OPLS dihedral potential type is
selected, then the real numbers Real(i,8) - Real(i,11) are the coefficients
in the Fourier series (see Dihedrals). The units are in kJ/mol. For
the CHARMM dihedral potential type, three additional parameters are
specified: \(a_0, a_1\) and \(\delta\) (see Dihedrals). If
harmonic dihedral potential type is used, then two additional parameters,
\(K_{phi}\) and \(\phi_0\) (see Dihedrals), are
specified. For the none dihedral potential type, no additional parameters
are necessary.

For example, for a united atom pentane molecule using an OPLS dihedral
potential type, the dihedrals are specified as follows:

Dihedral_Info
2
1 1 2 3 4 OPLS 0.0 2.95188 -0.5670 6.5794
2 2 3 4 5 OPLS 0.0 2.95188 -0.5670 6.5794

In this model two dihedral angles are specified by atoms 1,2,3,4 and
2,3,4,5. This model uses an OPLS functional form and thus four
parameters are provided after the OPLS flag.

Intramolecular Scaling

Intra_Scaling

Real(i,1) Real(i,2) Real(i,3) Real(i,4)

Real(i,5) Real(i,6) Real(i,7) Real(i,8)

This section sets the intramolecular scaling for 1-2, 1-3, 1-4 and 1-N
interactions within a given species. 1-2 means interactions between
atom 1 and another atom 2 directly bonded to it, 1-3 means
interactions between atom 1 and other atoms 3 separated from atom 1 by
exactly two bonds, etc. The first line corresponds to the VDW scaling:
Real(i,1) Real(i,2) Real(i,3) Real(i,4) apply to 1-2, 1-3, 1-4 and
1-N interactions, where N corresponds to all atoms separated from atom
1 by more than three bonds. The second line corresponds to the Coulomb
scaling: Real(i,5) Real(i,6) Real(i,7) Real(i,8) apply to 1-2, 1-3,
1-4 and 1-N interactions. Note that intramolecular scaling applies to
all the boxes in the simulation.

For example,

Intra_Scaling
0.0 0.0 0.5 1.0
0.0 0.0 0.5 1.0

turns off 1-2 and 1-3 interactions, scales the VDW and
Coulombic interactions for 1-4 atoms by 50%, and uses full
interactions for all other atom pairs in the species.

Note

If the # Intra_Scaling section is missing from the MCF, it will be
looked for in the input file. If provided, the values in the MCF file
will always override any values provided in the input file.

Fragment Info

Fragment_Info

Integer(1)

Integer(i,2) Integer(i,3) Integer(i,4) Integer(i,5) …
Integer(i,2+Integer(i,3))

This section defines the total number of fragments in a given species.
It is an optional keyword. However, if the species is composed of
fragments, then this section must be specified. The inputs are
specified below:

	Integer(1): Total number of fragments.

	Integer(i,2): Index of the \(i^{th}\) fragment.

	Integer(i,3): Number of atoms in the \(i^{th}\) fragment.

	Integer(i,4) … Integer(i,2+integer(i,3)): List of the atom IDs in
the fragment. The first atom ID is that for the branch point atom.
.. warning:

Atom ordering for the remaining atoms must match the order of atoms
in the fragment library files.

For example, for a pentane united atom model:

Fragment_Info
3
1 3 2 1 3
2 3 3 2 4
3 3 4 3 5

This specifies three fragments. Each of these fragments has three atoms. The
first atom specified for each of the fragments is the branch point atom.

Fragment Connectivity

Fragment_Connectivity

Integer(1)

Integer(i,2) Integer(i,3) Integer(i,4)

The section lists the fragment connectivity - which fragment is bonded
to which other fragment. It is a required keyword if
Fragment_Info is specified.

	Integer(1): total number of fragment connections.

	Integer(i,2): index of the \(i^{th}\) fragment connectivity.

	Integer(i,3) Integer(i,4): fragment IDs participating in the
connectivty.

For example, for a pentane united atom model:

Fragment_Connectivity
2
1 1 2
2 2 3

In this example, there are three fragments, therefore, two fragment
connectivities must be specified. Note that fragment 1 is connected to fragment
2 and fragment 2 is connected to fragment 3.

Utilities

Generate a Molecular Connectivity File

The script mcfgen.py is a tool that aims to ease the setup of molecular
connectivity files from scratch (see the Molecular Connectivity File section to learn
more about MCFs), as the generation of these files by hand can be error prone.
In this section, a pentane MCF will be generated to demonstrate the use of this
tool. The Transferable Potentials for Phase Equilibria (TraPPE) force field will
be used to represent the pentane molecular interactions. This force field
involves a pairwise-additive 12-6 Lennard-Jones potential to represent the
dispersion-repulsion interactions. Additionally, bond angles and dihedral angles
are represented through harmonic and OPLS functional forms, respectively. Bond
lengths are kept constant. The force field mathematical expression becomes

\[\begin{split}\begin{aligned}
U = \sum_{angles} & K_\theta(\theta-\theta_0)^2 + \\
\sum_{dihedrals} & \frac{1}{2}K_1[1+cos(\phi)]+\frac{1}{2}K_2[1-cos(2\phi)] + \frac{1}{2}K_3[1+cos(3\phi)]+\frac{1}{2}K_4[1-cos(4\phi)] + \\
\sum_{i} \sum_{i>j} & 4 \epsilon_{ij} \left [\left (\frac {\sigma_{ij}} { r_{ij} }\right)^{12} - \left (\frac {\sigma_{ij}} { r_{ij} }\right)^{6}\ \right]\end{aligned}\end{split}\]

First, generate (or obtain) a PDB file or a CML file. To generate a PDB or CML
file, software such as Gaussview or Avogadro can be used. Alternatively, PDB
files can be downloaded from the internet (e.g., https://www.rcsb.org).
In this example, a pentane PDB file using the program Gaussview v5.08 was
generated as shown below.

REMARK 1 File created by GaussView 5.0.8
ATOM 1 C1 PENL 1 2.142 1.395 -8.932 1.00 0.00 C
ATOM 2 C2 PENL 1 3.631 1.416 -8.537 1.00 0.00 C
ATOM 3 C3 PENL 1 4.203 -0.012 -8.612 1.00 0.00 C
ATOM 4 C4 PENL 1 5.691 0.009 -8.218 1.00 0.00 C
ATOM 5 C5 PENL 1 5.691 0.009 -8.218 1.00 0.00 C
TER
CONECT 1 2
CONECT 2 1 3
CONECT 3 2 4
CONECT 4 3 5
CONECT 5 4

Append a column containing the atom types:

REMARK 1 File created by GaussView 5.0.8
ATOM 1 C1 PENL 1 2.142 1.395 -8.932 1.00 0.00 C3 CH3
ATOM 2 C2 PENL 1 3.631 1.416 -8.537 1.00 0.00 C2 CH2
ATOM 3 C3 PENL 1 4.203 -0.012 -8.612 1.00 0.00 C2 CH2
ATOM 4 C4 PENL 1 5.691 0.009 -8.218 1.00 0.00 C2 CH2
ATOM 5 C5 PENL 1 5.691 0.009 -8.218 1.00 0.00 C3 CH3
TER
CONECT 1 2
CONECT 2 1 3
CONECT 3 2 4
CONECT 4 3 5
CONECT 5 4

Avogadro v1.1.1 can also be used to generate CML files. Below is an
example of a CML file generated using Avogadro.

<molecule>
 <atomArray>
 <atom id="a1" elementType="C" x3="-0.367789" y3="-0.161907" z3="0.206019"/>
 <atom id="a2" elementType="C" x3="-1.354811" y3="-1.178938" z3="-0.372241"/>
 <atom id="a3" elementType="C" x3="-2.735586" y3="-0.597632" z3="-0.678858"/>
 <atom id="a4" elementType="C" x3="-3.435276" y3="0.007943" z3="0.526735"/>
 <atom id="a5" elementType="C" x3="1.027694" y3="-0.340782" z3="-0.372648"/>
 </atomArray>
 <bondArray>
 <bond atomRefs2="a1 a2" order="1"/>
 <bond atomRefs2="a3 a4" order="1"/>
 <bond atomRefs2="a3 a2" order="1"/>
 <bond atomRefs2="a5 a1" order="1"/>
 </bondArray>
</molecule>

Modify the pentane united atom CML file. Note that the atom type is
appended as a last column between quotation marks.

<molecule>
 <atomArray>
 <atom id="a1" elementType="C" x3="-0.367789" y3="-0.161907" z3="0.206019"/> "CH2"
 <atom id="a2" elementType="C" x3="-1.354811" y3="-1.178938" z3="-0.372241"/> "CH2"
 <atom id="a3" elementType="C" x3="-2.735586" y3="-0.597632" z3="-0.678858"/> "CH2"
 <atom id="a4" elementType="C" x3="-3.435276" y3="0.007943" z3="0.526735"/> "CH3"
 <atom id="a5" elementType="C" x3="1.027694" y3="-0.340782" z3="-0.372648"/> "CH3"
 </atomArray>
 <bondArray>
 <bond atomRefs2="a1 a2" order="1"/>
 <bond atomRefs2="a3 a4" order="1"/>
 <bond atomRefs2="a3 a2" order="1"/>
 <bond atomRefs2="a5 a1" order="1"/>
 </bondArray>
</molecule>

In the terminal, run the following command:

python mcfgen.py pentane.pdb –ffTemplate

This command will create an .ff file. The first three sections of the FF file
are displayed next. Do not modify these.

atomtypes
2

begin atom-atomtype
1 CH3
2 CH2
3 CH2
4 CH2
5 CH3
end atom-atomtype

dihedraltype OPLS

The force field parameters for non-bonded (not shown), bonds, angle, dihedral
(not shown) and coulombic interactions (not shown) must be entered next to the
corresponding keyword. For example, the angle type CH3 CH2 CH2 has an angle of
114.0. This value must be placed next to the “Angle” keyword.

bonds
CH2 CH2
Length 1.54
Constant fixed

angles
CH3 CH2 CH2
Angle 114.0
Constant 31250.0

For more examples of filled ff files, please refer to the examples
contained in the /Scripts/MCF_Generation/ directory. Using the filled
.ff file, run:

python mcfgen.py pentane.pdb

Check the file newly created pentane.mcf for any possible errors. This example
can be found in the directory /Scripts/MCF_Generation/PDB/

Note that if an MCF for a rigid solid is being created, this last step
must include the --solid flag, as

python mcfgen.py zeolite.pdb --solid

Generate Library of Fragment Configurations

The goal of the script library_setup.py is to automate the generation of
fragment libraries. As a starting point, the script requires the simulation
input file, and the MCF and PDB files for each of the species. To run this
script, type

python library_setup.py $PATH$/cassandra.exe input_file.inp pdbfilespecies1.pdb pdfilespecies2.pdb ...

This script will create the necessary files to create the fragment libraries. It
will also run Cassandra to generate these libraries, whose location will be at
/species?/frag?/frag?.inp, where ’?’ refers to the species number, for
example, species 1, species 2 etc. Note that the script overwrites the section
of the input file where needed (i.e. # Fragment_Files) with the aforementioned
directory locations.

Convert LAMMPS dump file to .xyz and .H trajectory files

The script lammpstrjconvert.py is included to convert custom dump files from LAMMPS
to .H and .xyz files readable by Cassandra. The dump file must include
id, xu, yu, and zu. Other columns are allowed but ignored. The coordinates
must be in Angstroms, which are used by the LAMMPS unit styles real and metal.
The first required argument is the path to the LAMMPS dump file. This
must then be followed by a list of the number of molecules of each species in the trajectory.
The format string for the coordinate floats can also optionally be specified as the first argument,
using -f or --format followed by the desired format string; the default is %f.
For example, to convert a LAMMPS trajectory stored in dump file lmp_npt.lammpstrj
with 30 molecules of species 1, 15 molecules of species 2, and 25 molecules of species 3,
writing the coordinates with 7 decimal places, the following command may be used:

python lammpstrjconvert.py -f %.7f lmp_npt.lammpstrj 30 15 25

In this example, the trajectory would be converted to lmp_npt.H and lmp_npt.xyz,
as the paths of the .H and .xyz files are obtained by removing .lammpstrj
from the end of the LAMMPS dump file name (if this extension is present) and appending .H or .xyz,
respectively; if the LAMMPS dump file path includes parent directories, they are not included in the
.H and .xyz file paths.

The python function lammpstrjconvert can also be imported from lammpstrjconvert.py.
Calling this function directly, rather than through the script, allows additional optional
input arguments, such as the frames to include and the .H and .xyz file paths.

Simulating Rigid Solids and Surfaces

Simulations involving a rigid solid or surface can be performed in constant
volume ensembles (i.e., NVT and GCMC). For example, an adsorption isotherm can
be computed with a GCMC simulation in which fluid molecules are inserted into a
crystalline solid. In addition to the files described in Files Required to Run Cassandra,
the following files are required to run a simulation with a rigid solid or
surface:

	a molecular connectivity file with force field parameters for each atom in
the solid (*.mcf)

	a fragment library file listing the coordinates of each atom in the solid
(*.dat)

	a configuration file with the initial coordinates of the all atoms in the
system (*.xyz)

The MCF and fragment library file can be created using the scripts discussed in
Generate a Molecular Connectivity File and Generate Library of Fragment Configurations. Each of these scripts require a
starting PDB configuration file. The input file also requires specific
parameters as given in the following section. Sample input scripts for GCMC
simulations of various fluids in silicalite are included in the Examples/GCMC
directory of the Cassandra distribution.

Input file

The input file should be completed as described in Simulation Input File but
with the following parameters:

	Under the keyword # Prob_Translation, the translation width for the solid
is 0.

	Under the keyword # Prob_Rotation, the rotation width for the solid is 0.

	Under the keyword # Prob_Regrowth, the regrowth probability for the solid
is 0.

	The volume dimensions under the keyword # Box_Info must match the crystal
dimensions.

	Under the keyword # Start_Type, the read_config or add_to_config
options must be used.

GCMC simulations require the following additional parameters:

	Under the keyword # Prob_Insertion insertion method for the solid
is none.

	Under the keyword # Chemical_Potential_Info, no chemical
potential is required for the solid.

PDB file

A PDB configuration file for a zeolite can be created in the following
ways, among others:

	Manually, with atomic coordinates from the literature. For example,
the atomic coordinates of silicalite are published
here [https://doi.org/10.1021/j150615a020].

	From a Crystallographic Information File (CIF), which can be
downloaded from the
Database of Zeolite Structures [http://www.iza-structure.org/databases].
From the home page, click
on the menu “All codes” and select your zeolite. The website
will display structural information about the zeolite and will have a
link to download a CIF. The CIF contains information about the
zeolite structure such as cell parameters, space groups, T and O atom
coordinates. A CIF can be converted into a PDB file using either
Mercury or VESTA, both of which are available to download for free.
For example, using VESTA:

	From the File menu, click Open. Then download the CIF (e.g.
MFI.cif)

	From the Objects menu, click Boundary. Enter the desired number of
replicas along each axis. To output a single unit cell, enter -0
to 1 in the x, y and z ranges. To output a 2x2x2 crystal, enter -1
to 1 in the x, y and z ranges.

	From the File menu, click Export Data. Enter a filename ending
with .pdb (e.g. MFI.pdb)

Warning

Executing the script mcfgen.py for solids involves using the
-s or --solid flag. This will skip the CONECT information
that might be present in PDB files of solid materials, and thus
skip creating connectivity information such as bonds, angles,
dihedrals and fragments.

Molecular connectivity file

Since the solid structure will be rigid, no bond distances, angle
parameters or dihedral parameters are needed in the MCF. The PDB file
for the rigid solid does not list CONECT information, so the
mcfgen.py script will not include bond, angle, or dihedral sections
in the force field template (*.ff) or MCF. The number of fragments will
be zero. Only nonbonded parameters are needed.

Fragment library files

The library_setup.py script will not create a fragment library since
the MCF lists zero fragments.

Configuration xyz file

A simulation is initiated from an xyz file using the read_config or
add_to_config options. Start Type details the read_config and
add_to_config options.

Trajectory Reader

Pregenerated trajectories can be read by Cassandra for thermodynamic property calculations and/or Widom test particle insertions.
This can be especially useful for computing chemical potentials for molecular dynamics trajectories, as the trajectory can be generated and written out by a molecular dynamics engine, potentially with more efficient sampling than can be achieved with Cassandra. The resulting trajectory, once converted to .xyz and .H files like those output by Cassandra, can be read frame-by-frame into Cassandra, which can perform Widom insertions on the trajectory frames as it would during a NVT or NPT Cassandra simulation.

Input file

In order to use the trajectory reader, the following features must be included in the input file:

	Under the keyword # Sim_Type, the simulation type must be pregen, rather than a thermodynamic ensemble.

	The section # Pregen_Info must be included as described in Simulation Input File.

	While the # Box_Info section must be included as for other types of simulations, the box size included there
will be internally overwritten for each frame by the box size in the pregenerated trajectory .H file.
A box size must still be included and the box shape must accurately describe the actual box shape for the pregenerated trajectory.
For example, if the box size in the input file is cubic but the box of the pregenerated trajectory is triclinic,
the results will not be accurate.

	Under the keyword Simulation_Length_Info, the units must be steps, which are equivalent to simulation frames when the trajectory reader
is used. Writing a simulation length that exceeds the number of frames in the pregenerated trajectory does not cause an error,
but Cassandra will write a warning in the log file and consider the simulation completed upon trying to read a frame that doesn’t exist
in the pregenerated trajectory files. The warning message will include the number of frames Cassandra was able to read.

Unlike for other types of simulations, the sections # Move_Probability_Info, # Start_Type, and # Run_Type are not required in
the input file and will be ignored if they are present, since they do not apply.

Pregenerated Trajectory Files

A pregenerated trajectory must be supplied to Cassandra through .H and .xyz files, which are described in Cassandra Output Files.
Cassandra does not use the contents of the elements column of the .xyz file, so it does not need to be accurate,
though it does need to be present. The atoms of a molecule must be listed together in the same order as in the corresponding MCF file,
and all of the molecules of species 1 must be listed first, then species 2, and so on.

A utility script for converting LAMMPS dump files to .H and .xyz files is included with Cassandra and documented
in Convert LAMMPS dump file to .xyz and .H trajectory files.

Metropolis Acceptance Criteria

Monte Carlo moves implemented in Cassandra preserve detailed
balance between each pair of microstates \(m\) and \(n\)

(1)\[\Pi_{mn}\ \alpha_{mn}\ p_m = \Pi_{nm}\ \alpha_{nm}\ p_n\]

where \(\Pi_{mn}\) is the probability of accepting the move from
microstate \(m\) to microstate \(n\), \(\alpha_{mn}\) is the
probability of attempting the move that will form \(n\) from
\(m\), and \(p_m\) is the probability of \(m\) in the
ensemble of interest.

In Cassandra, detailed balance is enforced via the Metropolis criterion

(2)\[\Pi_{mn} = \min\left(1, \frac{\alpha_{nm}}{\alpha_{mn}} \frac{p_n}{p_m} \right)\]

The ratio in Eq. (2) will often
involve an exponential, e.g. \(e^{-\beta \Delta U}\). To preserve
precision in the energy calculation, the acceptance probability is
computed

(3)\[\Pi_{mn} = \exp\left\{-\max\left[0, \ln\left(\frac{\alpha_{mn}}{\alpha_{nm}} \frac{p_m}{p_n}\right)\right]\right\}\]

The logarithm, defined in code as ln_pacc, is tested in the function
accept_or_reject() which is defined in file accept_or_reject.f90.
If ln_pacc is greater than 0 and less than a maximum numerical value,
\(\Pi_{mn}\) is computed and compared to a random number.

accept_or_reject = .FALSE.
IF (ln_pacc <= 0.0_DP) THEN
 accept_or_reject = .TRUE.
ELSE IF (ln_pacc < max_kBT) THEN
 pacc = DEXP(-ln_pacc)
 IF (rranf() <= pacc) THEN
 accept_or_reject = .TRUE.
 END IF
END IF

Ensembles

Canonical Monte Carlo

In the canonical ensemble, the number of molecules \(N\), the volume
\(V\) and temperature \(T\) are all constant. The position,
orientation and conformation of a semi-flexible molecule with fixed
bond-lengths containing \(M\) atoms is given by a
\(2M+1\)-dimensional vector \(\mathbf{q}\). The positions,
orientations and conformations of all \(N\) molecules are denoted
\(\mathbf{q}^N\).

The probability of observing microstate \(m\) with configuration
\(\mathbf{q}_m^N\) is

(4)\[p_m = \frac{e^{-\beta U\left(\mathbf{q}_m^N\right)}}{Z(N,V,T)}\ d\mathbf{q}^N\]

where \(\beta\) is the inverse temperature \(1/k_BT\),
\(U\) is the potential energy, the differential volume
\(d\mathbf{q}^N\) is included to make \(p_m\) dimensionless and
\(Z\) is the configurational partition function

(5)\[Z(N,V,T) = \int e^{-\beta U(\mathbf{q}^N)} d\mathbf{q}^N.\]

The integral is over all \(N(2M+1)\) degrees of freedom. The ratio of
microstate probabilities follows from Eq. (4)

(6)\[\begin{split}\frac{p_m}{p_n} &= \frac{e^{-\beta U\left(\mathbf{q}_m^N\right)} d\mathbf{q}^N/Z(N,V,T)}{e^{-\beta U\left(\mathbf{q}_n^N\right)} d\mathbf{q}^N/Z(N,V,T)} \\
 &= e^{\beta (U_n - U_m)} = e^{\beta \Delta U}\end{split}\]

The configurational partition function \(Z\) and differential volume
\(d\mathbf{q}^N\) both cancel, leaving only the ratio of Boltzmann factors.

New configurations are generated by attempting moves that translate, rotate and
regrow a randomly selected molecule. For more information on the acceptance
rules of these moves, please refer to Molecule Translation,
Molecule Rotation and Molecule Regrowth, respectively.

Above, the microstate probability is normalized by the configurational
partition function \(Z\) because the only relevant degrees of
freedom are configurational. In other ensembles, the full canonical partition
function \(Q\) appears, integrated over both configuration space
\(\mathbf{q}^N\) and momenta space \(\mathbf{p}_q^N\)

(7)\[Q(N,V,T) = \frac{1}{h^{N(2M+1)} N!} \int e^{-\beta H(\mathbf{p}_q^N, \mathbf{q}^N)}\ d\mathbf{p}_q^N d\mathbf{q}^N\]

where the 2\(M\)+1 momenta \(\mathbf{p}_q\) are conjugate to the
generalized coordinates \(\mathbf{q}\). The momenta and configuration
integrals are separable, and the single molecule momenta integrals are all
identical.

\[\begin{split}Q(N,V,T) &= \frac{1}{N!} \left[\int e^{-\beta U(\mathbf{q}^N)} d\mathbf{q}^N \right] \left[\frac{1}{h^{2M+1}} \int e^{-\beta K(\mathbf{p}_q)}\ d\mathbf{p}_q \right]^N\\
 &= \frac{1}{N!} Z(N,V,T) \left[\frac{Q(1,V,T)}{Z(1,V,T)}\right]^N\end{split}\]

where \(Q(1,V,T)\) is the partition function of a single molecule in a box.
The center of mass integrals for a single molecule are separable from the
integrals over rotational and internal degrees of freedom:

(8)\[Q(1,V,T) = Q_{com}Q_{rot+int} = V \Lambda^{-3} Q_{rot+int}\]

where \(\Lambda\) is the de Broglie wavelength of the molecule and the
rotational and internal momenta integrals in \(Q_{rot+int}\) are not
separable since the moments of inertia will depend on the conformation adopted
by the molecule. The configurational partition function is further separable
into center of mass (translational), orientational and internal degrees of
freedom:

(9)\[Z(1,V,T) = VZ_{rot}Z_{int}\]

where the volume \(V\) is the translational partition function and
\(Z_{rot}\) equals \(4\pi\) for a linear molecule and \(8\pi^2\)
for a nonlinear molecule.

Isothermal-Isobaric Monte Carlo

In the isothermal-isobaric ensemble, the number of particles \(N\), the
pressure \(P\) and temperature \(T\) are all constant while the volume
\(V\) and energy \(E\) fluctuate. The partition function is

(10)\[\Delta(N,P,T) = \int e^{-\beta P V} Q(N,V,T) dV\]

where \(Q\) is dimensionless and \(\Delta\) has dimensions of volume.
The kinetic contribution to \(\Delta\) is independent of the pressure or
volume and consequently separable from the configurational contribution,
\(\Delta_Z\)

(11)\[\Delta_Z(N,P,T) = \int e^{-\beta P V} Z(N,V,T) dV\]

The probability of the system having volume \(V\) is

(12)\[p(V) = \frac{Z(N,V,T)e^{-\beta P V}}{\Delta_Z(N,P,T)}dV\]

The probability of observing microstate \(m\) with configuration
\(\mathbf{q}_m^N\) and volume \(V_m\) is

(13)\[\begin{split}p_m &= \frac{e^{-\beta U(\mathbf{q}_m^N)}d\mathbf{q}_m^N}{Z(N,V_m,T)}\ \frac{Q(N,V_m,T) e^{-\beta P V_m} dV}{\Delta(N,P,T)}\\
 &= \frac{e^{-\beta U_m - \beta P V_m}}{\Delta_Z(N,P,T)}\ d\mathbf{q}_m^N dV\end{split}\]

where the differential element \(d\mathbf{q}_m^N\) has subscript \(m\)
becuase it scales with the volume \(V_m\). The ratio of microstate
probabilities is

(14)\[\frac{p_m}{p_n} = e^{\beta (U_n - U_m) + \beta P (V_n - V_m)} \left(\frac{d\mathbf{q}_m}{d\mathbf{q}_n}\right)^N = e^{\beta \Delta U + \beta P \Delta V} \left(\frac{d\mathbf{q}_m}{d\mathbf{q}_n}\right)^N\]

New configurations are generated via Molecule Translation,
Molecule Rotation and Molecule Regrowth, and
Volume Scaling.

Grand Canonical Monte Carlo

In the grand canonical ensemble, the chemical potential \(\mu\), the volume
\(V\) and temperature \(T\) are held constant while the number of
molecules \(N\) and energy \(E\) fluctuate. The partition function is

(15)\[\Xi(\mu,V,T) = \sum\limits_{N=0}^{\infty} Q(N,V,T)\ e^{\beta \mu N}\]

The probability of the system having \(N\) molecules is

(16)\[p(N) = \frac{Q(N,V,T)e^{\beta \mu N}}{\Xi(\mu,V,T)}\]

The probability of observing microstate \(m\) with \(N_m\) molecules and
configuration \(\mathbf{q}_m^{N_m}\) is

(17)\[\begin{split}p_m &= \frac{e^{-\beta U(\mathbf{q}_m^{N_m})} d\mathbf{q}^{N_m}}{Z(N_m,V,T)}\ \frac{Q(N_m,V,T)e^{\beta \mu N_m}}{\Xi(\mu,V,T)}\\
 &= \frac{e^{-\beta U_m + \beta \mu N_m}}{\Xi(\mu,V,T)}\ \left[\frac{Q(1,V,T)}{Z(1,V,T)}\ d\mathbf{q}\right]^{N_m}\end{split}\]

Note that Eq. (17) does not contain the factorial \(N_m!\) that
accounts for indistinguishable particles. In a simulation, particles are
distinguishable: they are numbered and specific particles are picked for MC
moves. The ratio of microstate probabilities is

(18)\[\frac{p_m}{p_n} = e^{\beta \Delta U - \beta \mu \Delta N}\ \left[\frac{Q(1,V,T)}{Z(1,V,T)}\ d\mathbf{q}\right]^{-\Delta N}\]

Alternatively, Eq. (18) can be recast to use the fugacity
\(f\) instead of the chemical potential \(\mu\). The relationship
between \(\mu\) and \(f\) is

(19)\[\mu = -k_BT \ln\left(\frac{Q(1,V,T)}{N} \right) = -k_BT\ \ln\left(\frac{Q(1,V,T)}{\beta f V} \right)\]

Inserting Eq. (19) into Eq. (18) yields

(20)\[\frac{p_m}{p_n} = e^{\beta \Delta U}\ \left[\frac{\beta f V}{Z(1,V,T)}\ d\mathbf{q}\right]^{-\Delta N}\]

Fluctuations in the number of molecules are achieved by inserting and deleting
molecules. A successful insertion increases the number of molecules from
\(N\) to \(N\) + 1, i.e. \(\Delta N = 1\). A successful deletion
decreases the number of molecules from \(N\) to \(N\) - 1, i.e.
\(\Delta N = -1\).

Random insertions and deletions (see Inserting a Molecule Randomly and
Deleting a Molecule Inserted Randomly) in the liquid phase typically have very
large \(\Delta U\) due to core overlap and dangling bonds,
respectively, making the probability of acceptance very low.
To overcome this challenge, insertions in Cassandra are
attempted using Configurational Bias Monte Carlo. See
Inserting a Molecule with Configurational Bias Monte Carlo and Deleting a Molecule that was Inserted via Configurational Bias Monte Carlo for
details.

Gibbs Ensemble Monte Carlo

The Gibbs Ensemble Monte Carlo method is a standard technique for studying
phase equilibria of pure fluids and mixtures. It is often used to study
vapor-liquid equilibria due to its intuitive physical basis. In Cassandra, the
NVT and NPT versions of the Gibbs Ensemble (GEMC-NVT and GEMC-NPT) are
implemented. The GEMC-NVT method is suitable for simulating vapor liquid
equilibria of pure systems, since pure substances require the specification of
only one intensive variable (temperature) to completely specify a state of two
phases. By contrast, mixtures require the specification of an additional degree
of freedom (pressure). Thus, in the GEMC-NPT method, the pressure is specified
in addition to temperature.

The partition functions and microstate probabilities are derived for
Gibbs Ensemble-NVT and Gibbs Ensemble-NPT, below.
In both cases, thermal equilibrium is attained by
performing translation, rotation and regrowth moves. The acceptance
rules for these moves are identical to those presented in
Molecule Translation, Molecule Rotation, Molecule Regrowth
and Regrowing a Molecule with Configurational Bias Monte Carlo. Pressure equilibrium is
achieved by exchanging volume in the case of GEMC-NVT, or independently
changing the volume of each box in the case of GEMC-NPT. The acceptance rule
for the exchanging volume in GEMC-NVT is derived and its Cassandra
implementation is presented in Volume Exchange Moves. The
acceptance rule for swapping a molecule in either GEMC-NVT
or GEMC-NPT are derived in Molecule Exchange Moves.

Gibbs Ensemble-NVT

In the GEMC-NVT method, there are two boxes A and B. To achieve phase
equilibrium, the boxes are allowed to exchange volume and particles under the
constraint of constant total volume (\(V^t=V^A + V^B\)) and constant number
of particles (\(N^t=N^A + N^B\)). The partition function is

(21)\[Q_{GE}\left(N^t,V^t,T\right) = \sum^{N^t}_{N{^A}=0} \int^{V^t}_0 dV^A\ Q(N^A,V^A,T)\ Q(N^t-N^A,V^t-V^A,T)\]

where \(Q(N,V,T)\) is the canonical partition function given in Eq.
(7). Since both boxes are maintained at the same
temperature the kinetic contribution of each molecule is independent of the box
in which it is located. The configurational partition function \(Z_{GE}\)
is defined by separating the momenta integrals from the configurational
integrals, volume integrals and molecular sums

(22)\[Z_{GE}\left(N^t,V^t,T\right) = \sum^{N^t}_{N{^A}=0} \int^{V^t}_0 dV^A\ Z(N^A,V^A,T)\ Z(N^t-N^A,V^t-V^A,T)\]

The probability of microstate \(m\) in the NVT Gibbs ensemble is

(23)\[p_m = \frac{e^{-\beta U^A \left(\textbf{q}^{N^A}\right) -\beta U^B \left(\textbf{q}^{N^B}\right)} d\textbf{q}^{N^A} d\textbf{q}^{N^B} dV^A}{Z_{GE}(N^t,V^t,T)}\]

Note that the molecule number factorials are not included in Eq.
(23), as particles are distinguishable in a
simulation (see also Eq. (17)).

For two microstates \(m\) and \(n\) that differ only by a
thermal move of a molecule in box A, the ratio of microstate
probabilities is

(24)\[\frac{p_m}{p_n} = e^{\beta \Delta U^A}\]

similar to Eq. (6). As a result, thermal moves
have the same acceptance rule in GEMC-NVT as they do in other ensembles. The
differential elements \(d\mathbf{q}\) will likewise cancel from the
acceptance criteria when swapping a molecule between boxes. When exchanging
volume, however, the differential elements will reduce to a ratio of the old
volume to the new, as shown in Volume Exchange Moves.

Gibbs Ensemble-NPT

The GEMC-NPT method is only valid for sampling phase equilibria in
multicomponent systems. It is similar to GEMC-NVT, except that the volume of
each box fluctuates independently. Consequently, the total volume of the system
is not constant and the pressure must be specified in addition to the
temperature. This is consistent with the Gibbs phase rule for mixtures, which
requires the specification of two intensive variables (e.g. pressure and
temperature) to fully specify a state with two phases.

The partition function is

(25)\[\Delta_{GE}\left(\{N^t\},P,T\right) = \sum^{N^t_1}_{N^A_1=0} ... \sum^{N^t_s}_{N^A_s=0}
 \ \Delta(\{N^A\},P,T)\ \Delta(\{N^t-N^A\},P,T)\]

where \(\{N\}\) is the number of molecules of each species,
\(\Delta({N},P,T)\) is the multicomponent analog to Eq.
(10), and there is a separate sum
for each species over the number of molecules in box A.
The kinetic contribution to \(\Delta_{GE}\) can be
separated giving the configurational partition function

(26)\[\Delta_{Z,GE}\left({N^t},P,T\right) = \sum^{N^t_1}_{N^A_1=0} ... \sum^{N^t_s}_{N^A_s=0}
 \ \Delta_Z({N^A},P,T)\ \Delta_Z({N^t-N^A},P,T)\]

where \(\Delta_Z({N},P,T)\) is the multicomponent analog to Eq.
(11). The
probability of microstate \(m\) in this ensemble is

(27)\[p_m = \frac{e^{-\beta U^A -\beta U^B - \beta P V^A - \beta P V^B} dV^A dV^B}{\Delta_{Z,GE}({N^t},P,T)}
 \prod_{s=1}^{N_{species}} \left[d\mathbf{q}_s^{A} \right]^{N_s^A}
 \left[d\mathbf{q}_s^{B} \right]^{N_s^B}\]

Similar to GEMC-NVT, the ratio of probabilities between microstates that differ
by only a thermal move in box A is

\[\frac{p_m}{p_n} = e^{\beta \Delta U^A}\]

Volume changes are only attempted on one box at a time. The ratio of
probabilities between microstates that differ only by the volume of box A is

\[\frac{p_m}{p_n} = e^{\beta \Delta U^A} + \left(\frac{V^A_m}{V^A_n} \right)^{N^A}\]

similar to Eq. (14). As a result, volume moves
in GEMC-NPT have the same acceptance criteria as in the NPT ensemble (see Eq.
(31)).

Monte Carlo Moves

Molecule Translation

A molecule is translated by moving its center of mass in each Cartesian
direction by a random amount chosen from the uniform distribution on the
interval [-\(\delta r_{max},\delta r_{max}\)]. The maximum
displacement \(\delta r_{max}\) must be given in the input file. The
translation move is symmetric in forward and reverse directions. That
is, either microstate \(n\) can be formed from microstate \(m\)
and vice versa by moving one molecule within \(\delta r_{max}\) in
each Cartesian direction, or microstate \(n\) cannot be formed at
all. As a result, \(\alpha_{mn} = \alpha_{nm}\).

The acceptance probability for a translation move follows from
Eq. (6)

(28)\[\ln \left(\frac{\alpha_{mn}}{\alpha_{nm}} \frac{p_m}{p_n} \right) = \ln \left(\frac{p_m}{p_n} \right) = \beta \Delta U\]

In Cassandra, the translation move is implemented in the subroutine
Translate defined in move_translate.f90. The variable names in the move_translate.f90 code
are identified with the symbols from
Eq. (28) in Table 8

ln_pacc = beta(ibox) * delta_e
accept = accept_or_reject(ln_pacc)

Table 8 Variable symbols and code names for translating and rotating a molecule.

	Symbol

	Code name

	\(\beta\)

	beta(this_box)

	\(\Delta U\)

	delta_e

Molecule Rotation

A linear molecule is rotated differently than a nonlinear molecule. A molecule
is identified as linear if it is composed of 2 atoms or if all the angles are
rigid with a bond angle of 180\(^{\circ}\).

If the molecule is linear:

	Pick three random angles: \(\phi\) on [\(-\pi,\pi\)],
\(\cos(\theta)\) on [-1,1], and \(\psi\) on [\(-\pi,\pi\)].

	With the origin at the molecule’s center of mass, rotate by \(\phi\)
around \(z\), rotate by \(\theta\) around \(x'\), and rotate by
\(\psi\) around \(z'\), as shown below.

[image: https://mathworld.wolfram.com/images/eps-gif/EulerAngles_600.gif:name:fig:euler_angles]

Fig. 2 Procedure for rotating linear molecules. Image from
mathworld.wolfram.com/EulerAngles.html.

Even though three angles are randomly chosen, the probability of the resulting
orientation is \(d\cos(\theta)d\phi/4\pi\).

If the molecule is nonlinear:

	Randomly select an axis: \(x\), \(y\), or \(z\).

	Choose a random angular displacement \(\delta \theta\) from
\([-\delta \theta_{max}, \delta \theta_{max}]\). \(\delta
\theta_{max}\) must be given in the input file.

	Rotate the molecule around a vector parallel to the selected axis and through
its center of mass by \(\delta \theta\).

In either case, the rotation move is symmetric, \(\alpha_{mn} =
\alpha_{nm}\), and the acceptance criteria is given by Eq. (28). The
rotation move is implemented in subroutine Rotate defined in
move_rotate.f90.

ln_pacc = beta(ibox) * delta_e
accept = accept_or_reject(ln_pacc)

Molecule Regrowth

Internal degrees of freedom in flexible molecules are sampled by deleting one or
more fragments from the molecule and replacing the deleted fragments with
conformations from a reservoir of fragment conformations. If the molecule
consists of only a single fragment (e.g, water, all atom methane, united atom
propane, all atom cyclohexane), the entire molecule is deleted and replaced as
follows:

	Randomly select a molecule \(i\) with uniform probability \(1/N\),
record its center-of-mass position and delete it.

	Select a molecular conformation with Boltzmann probability \(e^{-\beta
U(\mathbf{q}_{int,n}^{(i)})}/Z_{int}\), where \(\mathbf{q}_{int,n}^{(i)}\)
are the internal bond or improper angles of molecule \(i\) in microstate
\(n\) and \(Z_{int}\) is the configurational partition function over
internal degrees of freedom (see Eq. (9)).

	Pick three random angles: \(\phi\) on [\(-\pi,\pi\)],
\(\cos(\theta)\) on [-1,1], and \(\psi\) on [\(-\pi,\pi\)].
Rotate the molecule as shown in fig:euler_angles.
The probability of the resulting orientation is
\(d\mathbf{q}_{rot}/Z_{rot}\), which for a nonlinear molecule is
\(d\cos(\theta) d\phi d\psi / 8 \pi^2\).

	Place the molecule with the selected conformation and orientation at the same
center-of-mass position as the deleted molecule.

Regrowing a monoatomic particle has no effect. Regrowing a linear molecule is
the same as rotating it. The overall probability \(\alpha_{mn}\) of
regrowing a molecule with the selected orientation and conformation is

(29)\[\alpha_{mn} = \frac{1}{N} \frac{d\mathbf{q}_{rot}}{Z_{rot}} \frac{e^{-\beta U(\mathbf{q}_n^{(i)})}d\mathbf{q}_{int}}{Z_{int}}\]

where \(\mathbf{q}_n^{(i)}\) denotes the position, orientation and
conformation of molecule \(i\) in microstate \(n\) and
\(U(\mathbf{q}_n^{(i)})\) is the potential energy of the isolated molecule
\(i\), i.e. the intramolecular potential energy. The reverse probability
\(\alpha_{nm}\) is identical except for the intramolecular potential energy
\(U(\mathbf{q}_m^{(i)})\) of molecule \(i\) in microstate \(m\).
Using Eqs. (6) and (29), the acceptance criteria
for the regrowth of a single fragment molecule is

(30)\[\begin{split}\ln\left(\frac{\alpha_{mn}}{\alpha_{nm}} \frac{p_m}{p_n} \right)
&= \beta \left[\left(U(\mathbf{q}^N_n) - U(\mathbf{q}^N_m)\right) - \left(U(\mathbf{q}_n^{(i)}) - U(\mathbf{q}_m^{(i)})\right)\right] \\
&= \beta \Delta U - \beta \Delta U_{int}^{(i)} = \beta \Delta U_{inter}^{(i)}\end{split}\]

Only the change in the intermolecular potential energy between molecule
\(i\) and the other \(N-1\) molecules contributes to the acceptance
criteria. The code that implements Eq. (30) is shown in
code in Regrowing a Molecule with Configurational Bias Monte Carlo

If the molecule consists of more than one fragment (e.g., all atom ethane, all
atom toluene, united atom butane), a bond is cut and the severed fragments are
regrown using Configurational Bias Monte Carlo (CBMC). See Regrowing a Molecule with Configurational Bias Monte Carlo
for more details.

Volume Scaling

In Cassandra, new volumes are sampled as follows:

	Pick a random volume \(\Delta V\) with uniform probability from the
interval [\(-\delta V_{max}\), \(\delta V_{max}\)]. The trial
volume is \(V + \Delta V\).

	Scale the box lengths uniformly.

	Scale the center of mass of each molecule uniformly.

The probability of selecting \(\Delta V\) is the same as selecting
\(-\Delta V\) which makes scaling the volume symmetric,
\(\alpha_{mn}=\alpha_{nm}\). Scaling the configurations changes the
differential element \(d\mathbf{q}_m^N\) surrounding configuration
\(\mathbf{q}_m^N\). Only the molecular centers of mass change, so we can
separate \(d\mathbf{q}\) into 3 center of mass coordinates
\(d\mathbf{r}_{com}\) and 2\(M\)-2 orientational and internal
coordinates \(d\mathbf{q}_{rot+int}\). The scaled center of mass positions
are held constant, making \(d\mathbf{r}_{com} = V d\mathbf{s}_{com}\). The
acceptance probability for a volume scaling move is

(31)\[\ln \left(\frac{\alpha_{mn}}{\alpha_{nm}} \frac{p_m}{p_n} \right) = \ln \left(\frac{p_m}{p_n} \right) = \beta \Delta U + \beta P \Delta V + N \ln\left(\frac{V_m}{V_n}\right)\]

The volume scaling move is implemented in subroutine Volume_Change defined in
move_volume.f90.

ln_pacc = beta(this_box) * delta_e &
 + beta(this_box) * pressure(this_box) * delta_volume &
 - total_molecules * DLOG(box_list(this_box)%volume/box_list_old%volume)
accept = accept_or_reject(ln_pacc)

Table 9 Variable symbols and code names for volume scaling move.

	Symbol

	Code name

	\(\beta\)

	beta(this_box)

	\(\Delta U\)

	delta_e

	\(P\)

	pressure(this_box)

	\(\Delta V\)

	delta_volume

	\(N\)

	total_molecules

	\(V_n\)

	box_list(this_box)%volume

	\(V_m\)

	box_list_old%volume

Inserting a Molecule with Configurational Bias Monte Carlo

In Configurational Bias Monte Carlo (CBMC), the molecular conformation of the
inserted molecule is molded to the insertion cavity. First, the molecule is
parsed into fragments such that each fragment is composed of (a) a central atom
and the atoms directly bonded to it (see Fig. 3), or
(b) a ring of atoms and all the atoms directly
bonded to them. Then, a position, orientation and molecular conformation of the
molecule to be inserted are selected via the following steps:

[image: ../_images/propane-fragments.png]

Fig. 3 (a) An all-atom model of propane. (b) The same model as in (a), but
parsed into three fragments.

	Select the order in which each fragment of the (\(N+1\))th molecule will
be placed. The probability of the resulting sequence is \(p_{seq}\). (See
example in Table 10)

	The first fragment \(i\) is chosen with uniform probability 1/\(N_{frag}\).

	Subsequent fragments must be connected to a previously chosen fragment and
are chosen with the uniform probability 1/\(N_{cnxn}\), where the
number of connections \(N_{cnxn}= \sum_{ij}{\delta_{ij} h_{i}
(1-h_{j})}\) is summed over all fragments \(i\) and \(j\).
\(h_i\) is 1 if fragment \(i\) has been previously chosen and 0
otherwise. \(\delta_{ij}\) is 1 if fragments \(i\) and
\(j\) are connected and 0 otherwise.

	Select a conformation for fragment \(i\) with Boltzmann probability
\(e^{-\beta U(\mathbf{q}_{frag_i})}d\mathbf{q}_{frag_i}/Z_{frag_i}\),
where \(\mathbf{q}_{frag_i}\) are the internal degrees of freedom (angles
and/or impropers) associated with fragment \(i\).

	Select an orientation with uniform probability
\(d\mathbf{q}_{rot}/Z_{rot}\).

	Select a coordinate for the center of mass (COM) of fragment \(i\):

	Select \(\kappa_{ins}\) trial coordinates \(\mathbf{r}_k\), each
with uniform probability \(d\mathbf{r}/V\). Since one of the trial
coordinates will be selected later, the individual probabilities are
additive. The probability of the collection of trial coordinates is
\(\kappa_{ins}d\mathbf{r}/V\).

	Compute the change in potential energy \(\Delta U_k^{ins}\) of
inserting fragment \(i\) at each position \(\mathbf{r}_k\) into
configuration \(\mathbf{q}_m^N\).

	Select one of the trial coordinates with probability
\(e^{-\beta \Delta U_k^{ins}} / \sum_k{e^{-\beta \Delta U_k^{ins}}}\).

	For each additional fragment \(j\):

	Select a fragment conformation with Boltzmann probability\(e^{-\beta
U(\mathbf{q}_{frag_j})}d\mathbf{q}_{frag_j}/Z_{frag_j}\)

	Select the first of \(\kappa_{dih}\) trial dihedrals \(\phi_0\)
with uniform probability from the interval
[0,:math:frac{2pi}{kappa_{dih}}). Additional trial dihedrals are
equally spaced around the unit circle,
\(\phi_k=\phi_{k-1}+2\pi/\kappa_{dih}\). The probability of
selecting \(\phi_0\) is \(\kappa_{dih}d\phi/2\pi\).

	Compute the change in potential energy \(\Delta U_k^{dih}\) of
attaching fragment \(j\) to the growing molecule with each dihedral
\(\phi_k\).

	Select one of the trial dihedrals with probability
\(e^{-\beta \Delta U_k^{dih}} / \sum_k{e^{-\beta \Delta U_k^{dih}}}\).

Table 10 Possible sequences and probabilities for inserting the fragments of the all-atom model of propane shown in Fig. 3.

	Sequence

	\(p_{seq}\)

	1 2 3

	1/3

	2 1 3

	1/6

	2 3 1

	1/6

	3 2 1

	1/3

The overall probability \(\alpha_{mn}\) of attempting the insertion with the
selected position, orientation and conformation is

(32)\[\begin{split}\alpha_{mn} &= p_{seq}\ \frac{d\mathbf{q}_{rot}}{Z_{rot}}\ \frac{\kappa_{ins}d\mathbf{r}}{V}\ \frac{e^{-\beta \Delta U_k^{ins}}}{\sum_k{e^{-\beta \Delta U_k^{ins}}}}\ \times \\
 &\ \ \ \left[\prod_{i=1}^{N_{frag}}{\frac{e^{-\beta U(\mathbf{q}_{frag_i})}d\mathbf{q}_{frag_i}}{Z_{frag_i}}}\right]\ \left[\prod_{j=1}^{N_{frag}-1}{\frac{\kappa_{dih}d\phi}{2\pi}\ \frac{e^{-\beta \Delta U_k^{dih}}}{\sum_k{e^{-\beta \Delta U_k^{dih}}}}}\right] \\
 &= p_{seq}\ p_{bias}\ \frac{e^{-\beta U(\mathbf{q}_{frag})}d\mathbf{q}}{VZ_{rot}Z_{frag}\Omega_{dih}}\end{split}\]

where \(Z_{frag} = \prod_i Z_{frag_i}\) is the configurational partition
function over degrees of freedom internal to each fragment,
\(U(\mathbf{q}_{frag}) = \sum_iU(\mathbf{q}_{frag_i})\) is the summed
potential energy of each of the (disconnected) fragments, \(\Omega_{dih} =
(2\pi)^{N_{frag}-1}\) and \(p_{bias}\) is

(33)\[p_{bias} = \frac{\kappa_{ins}\ e^{-\beta \Delta U_k^{ins}}}{\sum_k{e^{-\beta \Delta U_k^{ins}}}}\ \left[\prod_{j=1}^{N_{frag}-1}{\frac{\kappa_{dih}\ e^{-\beta \Delta U_k^{dih}}}{\sum_k{e^{-\beta \Delta U_k^{dih}}}}}\right]\]

Note that the term \(VZ_{rot}Z_{frag}\Omega_{dih}\) in the denominator of
Eq. (32) differs from \(Z(1,V,T)=VZ_{rot}Z_{int}\).

In the reverse move, 1 of the \(N+1\) particles is randomly selected for
deletion. The probability \(\alpha_{nm}\) of picking the molecule we just
inserted is

(34)\[\alpha_{nm} = \frac{1}{N+1}\]

Combining Eqs. (32) and (34)
with Eq. (18) or Eq. (20) gives the acceptance
probability for a CBMC insertion move

(35)\[\ln\left(\frac{\alpha_{mn}}{\alpha_{nm}} \frac{p_m}{p_n} \right) = \beta \left[\Delta U - U(\mathbf{q}^{(N+1)}_{frag,n})\right] - \beta \mu' + \ln\left(\frac{(N+1)\Lambda^3}{V} \right) + \ln\left(p_{seq}p_{bias} \right)\]

(36)\[\ln\left(\frac{\alpha_{mn}}{\alpha_{nm}} \frac{p_m}{p_n} \right) = \beta \left[\Delta U - U(\mathbf{q}^{(N+1)}_{frag,n})\right] + \ln\left(\frac{N+1}{\beta f' V} \right) + \ln\left(p_{seq}p_{bias} \right)\]

where \(\mu'\) and \(f'\) are, respectively, a shifted chemical
potential and a skewed fugacity,

(60)\[\mu' =\mu+k_BT\ln\left(Q_{rot+int} \frac{Z_{frag}\Omega_{dih}}{Z_{int}} \right)\]

(38)\[f' = f \frac{Z_{frag}\Omega_{dih}}{Z_{int}}\]

All of the terms in Eqs. (60) and (38) are intensive.
GCMC simulations using Eqs. (35) and
(36) will converge to the same average density
regardless of the simulation volume \(V\). However, the values of
\(\mu'\) or \(f'\) that correspond to the converged density will not
match tabulated values of \(\mu\) or \(f\) computed from experimental
data.

Note that the term \(Z^{IG}/\Omega\) from
Macedonia *et al* [https://doi.org/10.1080/00268979909483082]
would be equivalent to
\(Z_{int}/\Omega_{frag}\Omega_{dih}\) in the nomenclature used here. The
configurational partition function of the disconnected fragments integrates over
a Boltzmann factor, \(Z_{frag} = \int e^{-\beta U(\mathbf{q}_{frag})}
d\mathbf{q}_{frag}\), whereas the term \(\Omega_{frag} = \int
d\mathbf{q}_{frag}\) does not.

In Cassandra, the insertion move is implemented in the subroutine Insertion in
move_insert.f90. The relevant lines from version 1.2 are quoted below. The
variable names in the move_insert.f90 code are identified with symbols in
Table 11.

! change in energy less energy used to bias selection of fragments
dE_frag = E_angle + nrg_ring_frag_tot
ln_pacc = beta(ibox) * (dE - dE_frag)

! chemical potential
ln_pacc = ln_pacc - species_list(is)%chem_potential * beta(ibox)

! bias from CBMC
ln_pacc = ln_pacc + ln_pbias

! density
ln_pacc = ln_pacc + DLOG(REAL(nmols(is,ibox),DP)) &
 + 3.0_DP*DLOG(species_list(is)%de_broglie(ibox)) &
 - DLOG(box_list(ibox)%volume)

accept = accept_or_reject(ln_pacc)

Note that GCMC simulations using fugacities are currently not supported in
Cassandra. This feature will be implemented in a future release.

Table 11 Variable symbols and code names for inserting a molecule

	Symbol

	Code name

	\(\beta\)

	beta(ibox)

	\(\Delta U\)

	dE

	\(U(\mathbf{q}_{frag})\)

	dE_frag

	ln(\(p_{seq}p_{bias})\)

	ln_pbias

	\(\mu'\)

	species_list(is)%chem_potential

	\(N\)

	nmols(is,this_box)

	\(V\)

	box_list(this_box)%volume

	\(\Lambda\)

	species_list(is)%de_broglie(this_box)

Deleting a Molecule that was Inserted via Configurational Bias Monte Carlo

The probability \(\alpha_{mn}\) of choosing a molecule to delete is

\[\alpha_{mn} = \frac{1}{N}\]

The probability of the reverse move \(\alpha_{nm}\) requires
knowledge of the sequence and biasing probabilities \(p_{seq}\) and
\(p_{bias}\) that would have been used to place the molecule if it
was being inserted. \(p_{seq}\) and \(p_{bias}\) can be
calculated using the following procedure:

	Select the fragment order using the same procedure for inserting a
molecule. The probability of the resulting sequence is
\(p_{seq}\).

	The first fragment in the sequence is fragment \(j\). Calculate
the intramolecular potential energy of fragment \(j\)’s current
conformation, \(U(\mathbf{q}_{frag_j})\). The probability of this
conformation is Boltzmann
\(e^{-\beta U(\mathbf{q}_{frag_j})}d\mathbf{q}_{frag_j}/Z_{frag_j}\).

	The probability of the fragment’s current orientation is
\(d\mathbf{q}_{rot}/Z_{rot}\).

	Calculate the weight of the fragment’s current center of mass (COM)
coordinates:

	Compute the interaction potential energy \(\Delta U^{ins}\)
between fragment \(j\) and the other \(N-1\) molecules.

	Select \(\kappa_{ins}-1\) trial coordinates
\(\mathbf{r}_k\), each with uniform probability
\(d\mathbf{r}/V\).

	Calculate the weight of the fragment’s current COM amongst the
trial coordinates,
\(e^{-\beta \Delta U^{ins}} / \sum_k{e^{-\beta \Delta U_k^{ins}}}\).

	For each additional fragment \(j\):

	Calculate the intramolecular potential energy of fragment
\(j\)’s current conformation,
\(U(\mathbf{q}_{frag_j})\). The weight of this conformation in
the Boltzmann distribution is
\(e^{-\beta U(\mathbf{q}_{frag_j})}d\mathbf{q}_{frag_j}/Z_{frag_j}\).

	Calculate the interaction potential energy \(\Delta U^{dih}\)
between fragment \(j\), on the one hand, and fragments
\(i\) through \(j-1\) and the other \(N-1\) molecules.

	Calculate the current dihedral \(\phi_0\) of fragment
\(j\). Compute the interaction potential energy
\(\Delta U_k^{dih}\) at \(\kappa_{dih}-1\) trial dihedrals
\(\phi_k = \phi_{k-1} + 2\pi/\kappa_{dih}\).

	Compute the weight of \(\phi_0\) amongst the trial dihedrals,
\(e^{-\beta \Delta U^{dih}}/ \sum_k{e^{-\beta \Delta U_k^{dih}}}\).

The overall probability \(\alpha_{nm}\) is

(39)\[\alpha_{nm} = p_{seq}\ p_{bias}\ \frac{e^{-\beta U(\mathbf{q}_{frag})}d\mathbf{q}}{VZ_{rot}Z_{frag}\Omega_{dih}}.\]

The acceptance criteria for deleting a molecule inserted via CBMC is

(40)\[\begin{split}\ln\left(\frac{\alpha_{mn}}{\alpha_{nm}} \frac{p_m}{p_n} \right) &= \beta \left[\Delta U + U(\mathbf{q}^{(i)}_{frag,m})\right] + \beta \mu' + \ln\left(\frac{V}{N\Lambda^3} \right) - \ln\left(p_{seq}p_{bias} \right) \\
 &= \beta \left[\Delta U + U(\mathbf{q}^{(i)}_{frag,m})\right] + \ln\left(\frac{\beta f' V}{N} \right) - \ln\left(p_{seq}p_{bias} \right)\end{split}\]

In Cassandra, the deletion move is implemented in the subroutine
Deletion in move_delete.f90. The relevant lines are quoted below. The
variable names in move_delete.f90 code are identified with symbols in
Table 12.

! change in energy less energy used to bias fragment selection
dE_frag = - E_angle - nrg_ring_frag_tot
ln_pacc = beta(ibox) * (dE - dE_frag)

! chemical potential
ln_pacc = ln_pacc + beta(ibox) * species_list(is)%chem_potential

! CBMC bias probability
ln_pacc = ln_pacc - ln_pbias

! dimensionless density
ln_pacc = ln_pacc + DLOG(box_list(ibox)%volume) &
 - DLOG(REAL(nmols(is,ibox),DP)) &
 - 3.0_DP*DLOG(species_list(is)%de_broglie(ibox))

accept = accept_or_reject(ln_pacc)

Note that GCMC simulations using fugacities are currently not supported
in Cassandra. This feature will be implemented in a future release.

Table 12 Variable symbols and code names for deleting a molecule

	Symbol

	Code name

	\(\beta\)

	beta(ibox)

	\(\Delta U\)

	dE

	\(U(\mathbf{q}_{frag})\)

	dE_frag

	\(ln(p_{seq}p_{bias})\)

	ln_pbias

	\(\mu'\)

	species_list(is)%chem_potential

	\(N\)

	nmols(is,this_box)

	\(V\)

	box_list(this_box)%volume

	\(\Lambda\)

	species_list(is)%de_broglie(this_box)

Regrowing a Molecule with Configurational Bias Monte Carlo

Regrowing a molecule that has more than one fragment is a combination
deletion and insertion move. Starting from microstate \(m\):

	Randomly select a molecule with uniform probability \(1/N\).

	Randomly select a bond to cut on the selected molecule with uniform
probability \(1/N_{bonds}\).

	Delete the fragments on one side of the bond or the other with equal
probability. The number of deleted fragments is \(N_{del}\).

	Reinsert the deleted fragments using the CBMC procedures for
selecting the order of inserting the fragments, choosing a fragment
conformation, and a connecting dihedral value (see
Inserting a Molecule with Configurational Bias Monte Carlo).

The overall probability \(\alpha_{mn}\) of attempting to regrow the
molecule with the selected conformation is

(41)\[\begin{split}\alpha_{mn} &= \frac{p_{seq}}{N N_{bonds}}\ \left[\prod_{j=1}^{N_{del}}{\frac{e^{-\beta U(\mathbf{q}^{(i)}_{frag_j})}d\mathbf{q}_{frag_j}}{Z_{frag_j}}}\right]\ \left[\prod_{j=1}^{N_{del}}{\frac{\kappa_{dih}d\phi}{2\pi}\ \frac{e^{-\beta \Delta U_k^{dih}}}{\sum_k{e^{-\beta \Delta U_k^{dih}}}}}\right] \\
 &= \frac{p_{seq}}{N N_{bonds}}\ \frac{e^{-\beta U(\mathbf{q}^{(i)}_{del,n})}d\mathbf{q}}{Z_{del}\Omega_{del}}\ p_{forward}\end{split}\]

where \(Z_{del} = \prod_i Z_{frag_j}\) is the configurational partition
function over degrees of freedom internal to the deleted fragments,
\(U(\mathbf{q}^{(i)}_{del,n}) = \sum_jU(\mathbf{q}_{frag_j})\) is the
summed potential energy of each deleted fragment with the conformations in
microstate \(n\), \(\Omega_{del} = (2\pi)^{N_{del}}\) and
\(p_{forward}\) is the biasing probability

\[p_{forward} = \prod_{j=1}^{N_{del}}{\frac{\kappa_{dih}\ e^{-\beta \Delta U_k^{dih}}}{\sum_k{e^{-\beta \Delta U_k^{dih}}}}}\]

The reverse move is identical except for the potential energy of the deleted
fragments \(U(\mathbf{q}^{(i)}_{del,m})\) in microstate \(m\) and the
biasing probability \(p_{reverse}\) which will depend on the values of the
connecting dihedrals. Using Eqs. (6) and
(41), the acceptance criteria is:

(42)\[\ln\left(\frac{\alpha_{mn}}{\alpha_{nm}} \frac{p_m}{p_n} \right) = \beta \left[\left(U(\mathbf{q}^N_n) - U(\mathbf{q}^{(i)}_{del,n})\right) - \left(U(\mathbf{q}^N_m) - U(\mathbf{q}^{(i)}_{del,m})\right)\right] + \ln\left(\frac{p_{forward}}{p_{reverse}} \right)\]

Eq. (42) is implemented in subroutine cut_N_grow() in file
move_regrow.f90.

ln_pacc = beta(ibox) * (delta_e_n - nrg_ring_frag_forward) &
 - beta(ibox) * (delta_e_o - nrg_ring_frag_reverse) &
 + ln_pfor - ln_prev

accept = accept_or_reject(ln_pacc)

Table 13 Variable symbols and code names for regrowing a molecule

	Symbol

	Code name

	\(\beta\)

	beta(ibox)

	\(U(\mathbf{q}^N_n) - U(\mathbf{q}^{(i)}_{del,n})\)

	delta_e_n - nrg_ring_frag_forward

	\(U(\mathbf{q}^N_m) - U(\mathbf{q}^{(i)}_{del,m})\)

	delta_e_o - nrg_ring_frag_reverse

	\(ln(p_{forward})\)

	ln_pfor

	\(ln(p_{reverse})\)

	ln_prev

Volume Exchange Moves

In GEMC-NVT, volume is exchanged between the two boxes to achieve pressure
equilibrium using a symmetric volume move, \(\alpha_{mn} = \alpha_{nm}\).
If box A is shrunk by \(\Delta V\), then box B grows by \(\Delta V\)
and vice versa. \(\Delta V\) is chosen from a uniform distribution with
probability \(1/\delta V_{max}\), where \(\delta V_{max}\) is an
adjustable parameter. The scaled center of mass positions of each molecule are
held constant, introducing a ratio of volumes into the acceptance criteria
similar to Eq. (31).

The acceptance rule is derived from Eq. (23) and
yields

(43)\[\ln \left(\frac{\alpha_{mn}}{\alpha_{nm}} \frac{p_m}{p_n} \right) = \ln \left(\frac{p_m}{p_n} \right) = \beta \Delta U^A + \beta \Delta U^B + N^A \ln\left(\frac{V^A_m}{V^A_n}\right) + N^B \ln\left(\frac{V^B_m}{V^B_n}\right)\]

Table 14 Variable symbols and code names for the volume scaling move
 in the GEMC-NVT method.

	Symbol

	Code name

	\(\beta^A\)

	beta(box1)

	\(\beta^B\)

	beta(box2)

	\(\Delta U^A\)

	delta_e_1

	\(\Delta U^B\)

	delta_e_2

	\(N^A\)

	tot_mol_box_1

	\(N^B\)

	tot_mol_box_2

	\(V^A_m\)

	box_list(box1)%volume

	\(V^B_m\)

	box_list(box2)%volume

	\(V^A_n\)

	box_list_old_1%volume

	\(V^B_n\)

	box_list_old_2%volume

This acceptance rule is implemented in the file move_vol_swap.f90 as follows:

ln_pacc = beta(box_grw) * delta_e_1 + beta(box_shk) * delta_e_2 &
 - REAL(SUM(nmols(:,box_grw)),DP) * DLOG(box_list(box_grw)%volume / box_list_old_1%volume) &
 - REAL(SUM(nmols(:,box_shk)),DP) * DLOG(box_list(box_shk)%volume / box_list_old_2%volume)

Molecule Exchange Moves

In either GEMC-NVT or GEMC-NPT, molecules are swapped between the two boxes to
equalize the chemical potential of each species. The ratio of probabilities for
microstates that differ only by swapping a molecule of species \(s\) from
box \(out\) to box \(in\) is

(44)\[\frac{p_m}{p_n} = e^{\beta \Delta U^A + \beta \Delta U^B} \frac{d\mathbf{q}_s^{out}}{d\mathbf{q}_s^{in}}\]

where the differential elements \(d\mathbf{q}\) will cancel from the
acceptance criteria by similar terms in \(\alpha_{mn}/\alpha_{nm}\). The
particle swap is not symmetric since each molecule is inserted and deleted
using configurational bias. The forward probability \(\alpha_{mn}\) follows
from the steps used to swap a molecule:

	Pick a box \(out\) with probability \(p_{box}\), where
\(p_{box}\) is

	the ratio of molecules in box, \(N^{out}/N^t\) (default)

	a fixed probability given in the input file

	If necessary, pick a species \(s\) with probability
\(p_{spec}\), where \(p_{spec}\) is

	the ratio of molecules of species \(s\) in box \(out\),
\(N^{out}_s/N^{out}\) (default)

	a fixed probability given in the input file

	Pick a molecule of species \(s\) from the box \(out\) with
uniform probability, \(1/N^{out}_s\)

	Insert molecule in box \(in\) using protocol presented in
Inserting a Molecule with Configurational Bias Monte Carlo

If the default probabilities are used at each step, then a swap is attempted
for each molecule with uniform probability

\[\frac{N^{out}}{N^t} \frac{N^{out}_s}{N^{out}} \frac{1}{N^{out}_s} = \frac{1}{N^t}\]

The attempt probability of generating configuration \(n\)

(45)\[\alpha_{mn} = p_{out,m} p_{spec,m} \frac{1}{N^{out}_{s,m}} p_{seq}\ p_{bias,n}\
 \frac{e^{-\beta U^{in}(\mathbf{q}_{frag,n})}d\mathbf{q}_s^{in}}{V^{in}Z_{rot}Z_{frag}\Omega_{dih}}\]

where \(p_{bias}\) is defined in Eq. (33). The
reverse probability \(\alpha_{nm}\) is calculated similarly. The acceptance
rule is

(46)\[\ln \left(\frac{\alpha_{mn}}{\alpha_{nm}} \frac{p_m}{p_n} \right) =
 \ln \left(\frac{p_{out,m}}{p_{out,n}} \frac{p_{spec,m}}{p_{spec,n}} \frac{ p_{bias,n}}{p_{bias,m}}
 \frac{N^{in}_{s,n}+1}{N^{out}_{s,m}} \frac{V^{out}}{V^{in}} \right)
 - \beta U^{in}(\mathbf{q}_{frag,n}) + \beta U^{out}(\mathbf{q}_{frag,m}) + \beta \Delta U^{out} + \beta \Delta U^{in}\]

where \(p_{seq}\) does not appear since the same fragment regrowth sequence
is used in the forward and reverse moves. The molecule swap move is implemented
in the file move_mol_swap.f90 as follows:

Table 15 Variable symbols and code names for the particle transfer
 move in the GEMC-NVT method.

	Symbol

	Code name

	\(\beta^A\)

	beta(box_out)

	\(\beta^B\)

	beta(box_in)

	\(\Delta U^A\)

	-delta_e_out

	\(\Delta U^B\)

	delta_e_in

	\(U^{in}(\mathbf{q}_{frag,n})\)

	e_angle_in + nrg_ring_frag_in

	\(U^{out}(\mathbf{q}_{frag,m})\)

	e_angle_out + nrg_ring_frag_out

	\(V^{out}\)

	box_list(box_out)%volume

	\(V^{in}\)

	box_list(box_in)%volume

	\(ln(p_{bias,n})\)

	ln_pfor

	\(ln(p_{bias,m})\)

	ln_prev

	\(p_{out,m} p_{spec,m}\)

	P_forward

	\(p_{out,n} p_{spec,n}\)

	P_reverse

delta_e_in_pacc = delta_e_in
delta_e_out_pacc = delta_e_out

delta_e_in_pacc = delta_e_in_pacc - e_angle_in - nrg_ring_frag_in
delta_e_out_pacc = delta_e_out_pacc - e_angle_out - nrg_ring_frag_out

ln_pacc = beta(box_in)*delta_e_in_pacc - beta(box_out)*delta_e_out_pacc

ln_pacc = ln_pacc - DLOG(box_list(box_in)%volume) &
 + DLOG(box_list(box_out)%volume) &
 - DLOG(REAL(nmols(is,box_out),DP)) &
 + DLOG(REAL(nmols(is,box_in) + 1, DP))

ln_pacc = ln_pacc + ln_pfor - ln_prev &
 + DLOG(P_forward / P_reverse)

accept = accept_or_reject(ln_pacc)

Multicomponent Systems

Excluding Gibbs Ensemble-NPT, the acceptance rules for all the
Monte Carlo techniques expressed in this chapter have been developed for pure
component systems. The Monte Carlo moves and acceptance criteria for
multicomponent systems are straightforward extensions of the pure component
moves. The only modification needed to translate, rotate and regrow molecules
is to first select a species. In these moves, a species is selected randomly in
proportion to its mole fraction \(N_i/N\). When inserting and deleting a
molecule, the mole fractions of each species change. In these cases, a species
in a multicomponent system is selected instead with uniform probability
\(1/N_{species}\). In either case, species selection is symmetric for both
forward and reverse moves and so cancels from the acceptance criterion.

CBMC Widom Insertion Method

The Widom insertion method, also known as the test particle insertion method,
can be used to calculate the shifted chemical potential of a species during a
simulation. From shifted chemical potentials, excess chemical potentials and
Henry’s constants can be calculated.

The chemical potential \(\mu\) of a given species \(a\) in the NVT ensemble is
defined in Eq. (47), where \(F\) is the Helmholtz free energy.

(47)\[\mu_a = {\left(\frac{\partial F}{\partial N_a}\right)}_{V,T,N_{b \neq a}}\]

For the sake of simpler notation, the following derivation is for a pure component
system, but it can be easily extended to multicomponent systems.

The Helmholtz free energy is defined in Eq. (48).

(48)\[F(N,V,T) = -k_B T \ln{Q(N,V,T)}\]

Approximating Eq. (47) with the addition of a single molecule
and substituting Eq. (48) yields Eq. (49).

(49)\[\mu \approx F(N+1,V,T) - F(N,V,T) = -k_B T \ln{\left(\frac{Q(N+1,V,T)}{Q(N,V,T)}\right)}\]

Eq. (49) can be combined with Eq. (7)
to obtain Eq. (50).

(50)\[-\beta \mu = \ln{\left(\frac{Q(1,V,T) Z(N+1,V,T)}{(N+1) Z(1,V,T) Z(N,V,T)} \right)}\]

The configurational partition function \(Z(N,V,T)\) is defined in Eq.
(51), which leads to (52), where
\(\Delta U = U(\mathbf{q}^{N+1}) - U(\mathbf{q}^N)\) is the change in potential energy
of inserting the molecule, \({\langle ... \rangle}_N\) denotes NVT ensemble averaging
over configurational space of the system of \(N\) particles, and \(\mathbf{q}_{N+1}\)
denotes the generalized coordinates of only the inserted molecule.

(51)\[Z(N,V,T) = \int e^{-\beta U(\mathbf{q}^N)} d\mathbf{q}^N\]

(52)\[frac{Z(N+1,V,T)}{Z(N,V,T)} =
 \frac{\int \left(\int e^{-\beta \Delta U}d\mathbf{q}_{N+1}\right) e^{-\beta U(\mathbf{q}^N)} d\mathbf{q}^N}{\int e^{-\beta U(\mathbf{q}^N)} d\mathbf{q}^N} =
 \left\langle{\int e^{-\beta \Delta U} d\mathbf{q}_{N+1}}\right\rangle_N\]

The final integral in Eq. (52) can be estimated by CBMC
importance sampling with test molecules inserted as described in Inserting a Molecule with Configurational Bias Monte Carlo.
This is demonstrated in Eq. (53), where
\(n_{IPC}\) is the number of Widom insertions into the configuration of \(N\) molecules.
The overall probability \(\alpha_{mn}\) of attempting the insertion with a given position,
orientation, and conformation is defined by Eq. (32).

(53)\[\int e^{-\beta \Delta U} d\mathbf{q}_{N+1} =
 \frac{1}{n_{IPC}} \sum_{i=1}^{n_{IPC}} {\left({\frac{ e^{-\beta \Delta U}}{\alpha_{mn}} }\right)}_i\]

When combined with Eq. (53), Eq. (52)
can be further transformed into a single arithmetic average
(denoted by \(\langle ... \rangle\) without a subscript) as in
Eq. (54),
where \(n_{IPC}\) is the same for each N-molecule system configuration \(j\)
on which Widom insertions are performed, \(n_{confs}\) is the total number of these
system configurations, and \(n_{ins}=n_{IPC} n_{confs}\) is the total number of Widom insertions.

(54)\[\begin{split}\left\langle{\int e^{-\beta \Delta U} d\mathbf{q}_{N+1}}\right\rangle_N &=
 \frac{1}{n_{confs} n_{IPC}} \sum_{j=1}^{n_{confs}}
 \sum_{i=1}^{n_{IPC}} {\left({\frac{ e^{-\beta \Delta U}}{\alpha_{mn}} }\right)}_{i,j}
 = \frac{1}{n_{ins}} \sum_{k=1}^{n_{ins}} {\left({\frac{ e^{-\beta \Delta U}}{\alpha_{mn}} }\right)}_k \\
&= V Z_{rot} Z_{frag} \Omega_{dih} \left\langle
 \frac{\exp{(-\beta({\Delta}U-U_{frag} (\mathbf{q}_{frag,n}^{(N+1)})))}}{p_{seq} p_{bias}}
 \right\rangle\end{split}\]

Combining Eqs. (52), (54), (8),
and (9) with Eq. (50) yields
Eq. (55) for the chemical potential \(\mu\).

(55)\[\mu = -k_B T \ln{\left\langle \frac{V\Lambda^{-3} \exp{(-\beta({\Delta}U-U (\mathbf{q}_{frag,n}^{(N+1)})))}}{p_{seq} p_{bias} (N+1)} \right\rangle}
 - k_B T \ln\left(Q_{rot+int} \frac{Z_{frag}\Omega_{dih}}{Z_{int}} \right)\]

The chemical potential \(\mu\) cannot always be calculated in this way for relatively complex molecules,
so the shifted chemical potential \(\mu'\) defined in Eq. (60) is calculated instead
as in Eq. (56), where widom_var is a code variable defined in Eq. (57).

(56)\[\mu' = -k_B T \ln{\left\langle \texttt{widom_var} \right\rangle}\]

(57)\[\texttt{widom_var} = \frac{V\Lambda^{-3}}{N+1} \exp{\left[-\beta({\Delta}U-U (\mathbf{q}_{frag,n}^{(N+1)})) - \ln{(p_{seq} p_{bias})}\right]}\]

Unlike GCMC insertions, Widom insertions are never accepted and therefore do not have acceptance criteria.
The test molecule is only inserted for the sampling of widom_var and is then always removed.
While the derivation is different for other ensembles, the Widom insertion procedure and
Eqs. (55), (56), and (57) apply to all ensembles
in Cassandra. The identification of code variable names with symbols for widom_insert.f90 is
the same as in Table 11 for move_insert.f90, except for \(\mu'\), which
is only calculated and written to the log file upon completion of the simulation. As described in
Cassandra Output Files, the average widom_var values for each system configuration (step) in which
Widom insertions are performed are written to Widom property files. The final value of \(\mu\)
in kJ/mol for each test particle species in each box is written to the log file after the simulation is completed.

Appendix

Inserting a Molecule Randomly

To insert a molecule, a position, orientation and molecular conformation must
each be selected. The probability of inserting the new molecule at a random
location is \(d\mathbf{r}/V\), where \(d\mathbf{r}\) is a Cartesian
volume element of a single atom. The probability of choosing the molecule
orientation is \(d\mathbf{q}_{rot}/Z_{rot}\), which for a linear molecule
is \(d \cos(\theta) d\phi / 4\pi\) and for a nonlinear molecule is \(d
\cos(\theta)d\phi d\psi/8\pi^2\). The probability of the molecule conformation
only depends on the remaining \(2M-5\) internal bond angles, dihedral
angles and improper angles \(\mathbf{q}_{int}\). A thermal ensemble of
configurations is Boltzmann distributed \(e^{-\beta
U(\mathbf{q}_{int})}/Z_{int}\). The overall probability \(\alpha_{mn}\) is

(58)\[\alpha_{mn} = \frac{d\mathbf{r}}{V}\ \frac{d\mathbf{q}_{rot}}{Z_{rot}}\ \frac{e^{-\beta U(\mathbf{q}_{int,N+1,n})}}{Z_{int}}\ d\mathbf{q}_{int} = \frac{e^{-\beta U(\mathbf{q_{N+1,n}})}}{Z(1,V,T)}\ d\mathbf{q}.\]

where we have used Eq. (9)
to recover \(Z(1,V,T)\) and recognized
that only internal degrees of freedom contribute to the potential energy of the
isolated \(N+1\)th molecule in microstate \(n\),
\(U(\mathbf{q}_{N+1,n}) = U(\mathbf{q}_{int,N+1,n})\). For a point particle
with no rotational or internal degrees of freedom, \(\alpha_{mn}\) reduces
to \(d\mathbf{r}/V\). For molecules with internal flexibility, a library of
configurations distributed according to \(e^{-\beta
U(\mathbf{q}_{int})}/Z_{int}\) can be generated from a single molecule MC
simulation. In the reverse move, 1 of the \(N+1\) particles is randomly
selected for deletion. The probability \(\alpha_{nm}\) of picking the
molecule we just inserted is

\[\alpha_{nm} = \frac{1}{N+1}\]

The acceptance probability for a random insertion move is

(59)\[\ln\left(\frac{\alpha_{mn}}{\alpha_{nm}} \frac{p_m}{p_n} \right) = \beta \left[\Delta U - U(\mathbf{q}_{N+1})\right] - \beta \mu + \ln\left(\frac{N+1}{Q(1,V,T)} \right)\]

where \(U(\mathbf{q}_{N+1})\) is the intramolecular potential energy of the
inserted molecule. \(Q(1,V,T)\) is typically not known a priori, nor is it
easily estimated. Substituting Eq. (8)
into Eq. (59) and absorbing \(Q_{rot+int}\) into a
shifted chemical potential \(\mu'\)

(60)\[\mu' = \mu - k_BT\ln(Q_{rot+int})\]

gives the acceptance criteria for inserting a molecule

(61)\[\ln\left(\frac{\alpha_{mn}}{\alpha_{nm}} \frac{p_m}{p_n} \right) = \beta \left[\Delta U - U(\mathbf{q}_{N+1})\right] - \beta \mu' + \ln\left(\frac{(N+1)\Lambda^3}{V} \right).\]

The terms absorbed into \(\mu'\) are intensive and therefore GCMC
simulations using Eq. (61)
will converge to a specific average
density. However, the value of \(\mu'\) that corresponds to the converged
density will not match tabulated values of \(\mu\) computed from
experimental data.

Substituting Eq. (19) into Eq. (59) gives

(62)\[\ln\left(\frac{\alpha_{mn}}{\alpha_{nm}} \frac{p_m}{p_n} \right) = \beta \left[\Delta U - U(\mathbf{q}_{N+1})\right] + \ln\left(\frac{N+1}{\beta f V} \right)\]

where no terms have been absorbed into the fugacity \(f\). Note also that
the partition function has completely been eliminated from the acceptance
criteria.

Deleting a Molecule Inserted Randomly

The probability \(\alpha_{mn}\) of choosing a molecule to delete is

\[\alpha_{mn} = \frac{1}{N}\]

The probability \(\alpha_{nm}\) of inserting that molecule back in
is

\[\alpha_{nm} = \frac{e^{-\beta U(\mathbf{q})}}{Z(1,V,T)}\ d\mathbf{q}\]

The acceptance probability for deleting a molecule inserted randomly is

(63)\[\ln\left(\frac{\alpha_{mn}}{\alpha_{nm}} \frac{p_m}{p_n} \right) = \beta \left[\Delta U + U(\mathbf{q}_{N})\right] + \beta \mu' + \ln\left(\frac{V}{N\Lambda^3} \right)\]

(64)\[\ln\left(\frac{\alpha_{mn}}{\alpha_{nm}} \frac{p_m}{p_n} \right) = \beta \left[\Delta U + U(\mathbf{q}_{N})\right] + \ln\left(\frac{\beta f V}{N} \right)\]

Note that in \(\Delta U\) is defined differently in Eqs.
(61) and
(62) than in Eqs.
(63) and
(64). In the former, the new
configuration has more molecules, \(\Delta U = U(\mathbf{q}_n^{N+1}) -
U(\mathbf{q}_m^N)\). In the latter, the new configuration has fewer molecules,
\(\Delta U = U(\mathbf{q}_n^{N-1}) - U(\mathbf{q}_m^N)\).

Contributing

We welcome contributions to Cassandra. If you wish to contribute
you can find us on GitHub [https://github.com/MaginnGroup/Cassandra].

Citing Cassandra

If you use Cassandra in your research, please cite the following.

@article{cassandra,
 title={Cassandra: An open source Monte Carlo package for molecular simulation},
 author={Shah, Jindal K and
 Marin-Rimoldi, Eliseo and
 Mullen, Ryan Gotchy and
 Keene, Brian P and
 Khan, Sandip and
 Paluch, Andrew S and
 Rai, Neeraj and
 Romanielo, Lucienne L and
 Rosch, Thomas W
 Yoo, Brian and
 Maginn, Edward J},
 journal={Journal of Computational Chemistry},
 volume={38},
 number={19},
 pages={1727--1739},
 year={2017},
 publisher={Wiley Online Library}
}

License and Disclaimer

Cassandra is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version. This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. This user manual is distributed along with the Cassandra
software to aid in setting up various input files required for carrying
out a Cassandra Monte Carlo simulation. Every effort is made to release the most
updated and complete version of the manual when a new version of the software
is released. To report any inconsistencies, errors or missing information, or
to suggest improvements, contact Professor Edward Maginn.

The GNU General Public License is distributed with Cassandra and the
text can be found here [https://www.gnu.org/licenses/gpl-3.0.en.html]

Acknowledgements

Funding and resources

Support for this work was provided by a grant from the National Science
Foundation entitled “SI2-SSE: Development of Cassandra, a General, Efficient
and Parallel Monte Carlo Multiscale Modeling Software Platform for
Materials Research”, grant number ACI-1339785.

Ed Maginn would like to acknowledge financial support from Sandia National
Laboratory’s Computer Science Research Institute, which enabled him to take
a research leave and lay the foundation for Cassandra in collaboration with
Jindal Shah, who stayed behind at Notre Dame and helped keep the group going.
The hospitality of Steve Plimpton and co-workers at Sandia is gratefully
acknowledged.

Finally, we would also like to thank the Center for Research Computing at
Notre Dame, which provided support, encouragement, and infrastructure to
help bring Cassandra to life.

Contributors

People who have contributed to Cassandra through algorithm development and/or
writing code (to date) include:

	Ed Maginn

	Jindal Shah

	Eliseo Marin

	Brian Keene

	Sandip Khan

	Ryan Gotchy Mullen

	Andrew Paluch

	Neeraj Rai

	Lucienne Romanielo

	Tom Rosch

	Brian Yoo

	Ryan S. DeFever

	Ryan Smith

Some legacy code was used in the creation of Cassandra, and the following former
students are recognized for their work:

	David Eike

	Jim Larentzos

	Craig Powers

Index

 [image: License]
[image: Citing]
[image: Version] [https://anaconda.org/conda-forge/cassandra]
[image: Azure]
[image: GitHub] [https://github.com/MaginnGroup/Cassandra]

Overview

Cassandra is an open source Monte Carlo software package developed in the
Maginn group [http://sites.nd.edu/maginn-group/] at the
University of Notre Dame. It is designed to perform atomistic simulations
of molecules composed of rings, chains, or both.

Warning

ReadTheDocs documentation for Cassandra is currently under
construction. The PDF reference manual [https://github.com/MaginnGroup/Cassandra/releases/latest/download/user_guide.pdf]
is still considered the authoritative source during our transition to
ReadTheDocs. This message will be removed once the transition to
ReadTheDocs is complete.

Resources

	Installation guide: Instructions for installing Cassandra

	Cassandra Basics: The basic workflow to use Cassandra

	MoSDeF Cassandra [https://mosdef-cassandra.readthedocs.io] : A full-fledged
Python wrapper for Cassandra

	GitHub repository [https://github.com/MaginnGroup/Cassandra]: View the source code, contribute, and raise issues

	Workshop Materials [https://cassandra.nd.edu/images/code/cassandra_workshop_materials_June2016.tar.gz]: Notes on statistical
mechanics and additional tutorials from a June 2016 Cassandra Workshop

Citation

Please cite our publication if you use this software as part of your research.

Installation

Complete installation instructions are here.
A conda installation is available:

conda create --name mc -c conda-forge cassandra

Credits

Development of Cassandra was supported by the National Science Foundation
under grant number ACI-1339785. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation.

Complete acknowledgements can be found here.

 _static/comment-bright.png

_static/comment-close.png

_static/cassandra_logo_favicon.png

_static/cassandra_logo_square-small.png
Monte Carlo
SOFTWARE

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/setup_flowdiagram.png
Start
Run.
l cassandra.exe molecule.inp

_static/ajax-loader.gif

_images/propane-fragments.png
@ ()

W e oy

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Cassandra Monte Carlo Software

_static/up.png

_static/up-pressed.png

